-
等离激元光子学是围绕表面等离激元的原理和应用的学科, 是纳米光学的重要组成部分. 表面等离激元的本质是局域在材料界面纳米尺度内的多电子元激发. 这一元激发可以与电磁场强烈耦合, 使得我们可以通过纳米尺度结构接收, 调控和辐射微米尺度光信息, 并由此衍生出等离激元光子学的诸多应用. 近年来, 随着纳米加工尺度逼近量子极限, 等离激元的量子特性受到了广泛关注. 量子尺度的等离激元承接电子的波动性和光的粒子性, 以其独特的內禀属性, 在量子信息、高效光电器件、高灵敏探测等方面表现出十分诱人的前景. 本综述重点介绍量子等离激元近年来的发展现状, 回顾相关理论的发展以及与等离激元量子特性相关的一些突破性成果. 最后对量子等离激元未来的发展进行了展望.Plasmonics, focusing on the fundamental researches and novel applications of plasmons, has rapidly developed as an important branch of nano-optics in recent years. Essentially, surface plasmons are highly localized collective electron excitation at a metal-dielectric interface. This elementary excitation can be strongly coupled with electromagnetic fields, which enable one to collect, manipulate, and emit micron-scale optical signals through using nano-scale structures. Recently, the quantum properties of plasmons have received tremendous attention as nanofabrication techniques approach to the quantum limit. On this scale, with the unique intrinsic properties of plasmons, i.e. the particle-like nature of photons and wave-like nature of electrons, quantum plasmonics exhibits very attractive prospects in quantum information, high-efficiency optoelectronic devices, and highly sensitive detection, etc. Here in this paper, we review the development of quantum plasmonics in recent years, by introducing the research progress of relevant theories and the experimental breakthroughes. Some perspectives of the future development of quantum plasmonics are also outlined.
-
Keywords:
- plasmon /
- plasmonics /
- nano-optics /
- light-matter interaction
[1] Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
Google Scholar
[2] Nie S, Emory S R 1997 Science 275 5303
Google Scholar
[3] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667
Google Scholar
[4] Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402
Google Scholar
[5] Atwater H A, Polman A 2010 Nature Mater. 9 205
Google Scholar
[6] Srituravanich W, Fang N, Sun C, Luo Q, Zhang X 2004 Nano Lett. 4 1085
Google Scholar
[7] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
Google Scholar
[8] Engheta N 2007 Science 317 1698
Google Scholar
[9] Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387
Google Scholar
[10] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U 2009 Nature 460 1110
Google Scholar
[11] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629
Google Scholar
[12] Tong L, Wei H, Zhang S, Xu H 2014 Sensors (Switzerland)
14 7959 Google Scholar
[13] Pines D, Bohm D 1952 Phys. Rev. 85 338
Google Scholar
[14] Ritchie R H 1957 Phys. Rev. 106 874
Google Scholar
[15] Powell C J, Swan J B 1959 Phys. Rev. 115 869
Google Scholar
[16] Elson J M, Ritchie R H 1971 Phys. Rev. B 4 4129
Google Scholar
[17] Hopfield J J 1958 Phys. Rev. 112 1555
Google Scholar
[18] Zuloaga J, Prodan E, Nordlander P 2009 Nano Lett. 9 887
Google Scholar
[19] Zhao K, Troparevsky M C, Xiao D, Eguiluz A G, Zhang Z 2009 Phys. Rev. Lett. 102 186804
Google Scholar
[20] Cheng G, Qin W, Lin M H, Wei L, Fan X, Zhang H, Gwo S, Zeng C, Hou J G, Zhang Z 2017 Phys. Rev. Lett. 119 156803
Google Scholar
[21] Brongersma M L, Halas N J, Nordlander P 2015 Nature Nanotech. 10 25
Google Scholar
[22] Clavero C 2014 Nat. Photon. 8 95
[23] Kolesov R, Grotz B, Balasubramanian G, Stöhr R J, Nicolet A A L, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nature Phys. 5 470
Google Scholar
[24] Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal F J 2011 Phys. Rev. Lett. 106 020501
Google Scholar
[25] Altewischer E, van Exter M P, Woerdman J P 2002 Nature 418 304
Google Scholar
[26] Moreno E, García-Vidal F J, Erni D, Cirac J I, Martín-Moreno L 2004 Phys. Rev. Lett. 92 236801
Google Scholar
[27] Huck A, Smolka S, Lodahl P, Sørensen A S, Boltasseva A, Janousek J, Andersen U L 2009 Phys. Rev. Lett. 102 246802
Google Scholar
[28] Wei H, Pan D, Xu H 2015 Nanoscale 7 19053
Google Scholar
[29] Bergman D J, Stockman M I 2003 Phys. Rev. Lett. 90 27402
Google Scholar
[30] Li X, Teng A, Özer M M, Shen J, Weitering H H, Zhang Z 2014 New J. Phys. 16 065014
Google Scholar
[31] Li X, Xiao D, Zhang Z 2013 New J. Phys. 15 023011
Google Scholar
[32] Yuan Z, Gao S 2006 Phys. Rev. B 73 155411
Google Scholar
[33] Eguiluz A G 1985 Phys. Rev. B 31 3303
Google Scholar
[34] Ekardt W 1985 Phys. Rev. B 31 6360
Google Scholar
[35] Scholl J A, Koh A L, Dionne J A 2012 Nature 483 421
Google Scholar
[36] Savage K J, Hawkeye M M, Esteban R, Borisov A G, Aizpurua J, Baumberg J J 2012 Nature 491 574
Google Scholar
[37] Esteban R, Borisov A G, Nordlander P, Aizpurua J 2012 Nat. Commun. 3 825
Google Scholar
[38] Bennett A J 1970 Phys. Rev. B 1 203
Google Scholar
[39] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419
Google Scholar
[40] Faucheaux J A, Fu J, Jain P K 2014 J. Phys. Chem. C 118 2710
Google Scholar
[41] Törmä P, Barnes W L 2015 Rep. Prog. Phys. 78 013901
Google Scholar
[42] McMahon J M, Gray S K, Schatz G C 2009 Phys. Rev. Lett. 103 097403
Google Scholar
[43] Luo Y, Wiener A, Maier S A, Pendry J B 2013 Phys. Rev. Lett. 111 093901
Google Scholar
[44] Zhang W, Govorov A O, Bryant G W 2006 Phys. Rev. Lett. 97 146804
Google Scholar
[45] Artuso R D, Bryant G W 2008 Nano Lett. 8 2106
Google Scholar
[46] González-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801
Google Scholar
[47] Manjavacas A, García de Abajo F J, Nordlander P 2011 Nano Lett. 11 2318
Google Scholar
[48] Ding S J, Li X, Nan F, Zhong Y T, Zhou L, Xiao X, Wang Q Q, Zhang Z 2017 Phys. Rev. Lett. 119 177401
Google Scholar
[49] Tian G, Liu J C, Luo Y 2011 Phys. Rev. Lett. 106 177401
Google Scholar
[50] Kroner M, Govorov A O, Remi S, Biedermann B, Seidl S, Badolato A, Petroff P M, Zhang W, Barbour R, Gerardot B D, Warburton R J, Karrai K 2008 Nature 451 311
Google Scholar
[51] Nan F, Zhang Y F, Li X, Zhang X T, Li H, Zhang X, Jiang R, Wang J, Zhang W, Zhou L, Wang J H, Wang Q Q, Zhang Z 2015 Nano Lett. 15 2705
Google Scholar
[52] Lee J S, Huynh T, Lee S Y, Lee K G, Lee J, Tame M, Rockstuhl C, Lee C 2017 Phys. Rev. A 96 033833
Google Scholar
[53] Kim H T, Yu M 2019 Sci. Rep. 9 1922
Google Scholar
[54] Farcau C 2019 Sci. Rep. 9 3683
Google Scholar
[55] Alaeian H, Dionne J A 2014 Phys. Rev. A 89 033829
Google Scholar
[56] Hess O, Pendry J B, Maier S A, Oulton R F, Hamm J M, Tsakmakidis K L 2012 Nature Mater. 11 573
Google Scholar
[57] Sun M, Fang Y, Zhang Z, Xu H 2013 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 87 020401
Google Scholar
[58] Steidtner J, Pettinger B 2008 Phys. Rev. Lett. 100 236101
Google Scholar
[59] Ichimura T, Fujii S, Verma P, Yano T, Inouye Y, Kawata S 2009 Phys. Rev. Lett. 102 186101
Google Scholar
[60] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82
Google Scholar
[61] Zhong J H, Jin X, Meng L, Wang X, Su H S, Yang Z L, Williams C T, Ren B 2017 Nature Nanotech. 12 132
Google Scholar
[62] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2010 Nature Photon. 4 50
Google Scholar
[63] Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225
Google Scholar
[64] Wang H F, Chen G, Li X G, Dong Z C 2018 Chin. J. Chem. Phys. 31 263
Google Scholar
[65] Chen G, Li X G, Dong Z C 2015 Chin. J. Chem. Phys. 28 552
Google Scholar
[66] Chen G, Li X G, Zhang Z Y, Dong Z C 2015 Nanoscale 7 2442
Google Scholar
[67] Chen G, Luo Y, Gao H Y, Jiang J, Yu Y J, Zhang L, Zhang Y, Li X G, Zhang Z Y, Dong Z C 2019 Phys. Rev. Lett. 122 177401
Google Scholar
[68] Li G C, Zhang Q, Maier S A, Lei D 2018 Nanophotonics 7 1865
Google Scholar
[69] Li X, Zhou L, Hao Z, Wang Q Q 2018 Adv. Opt. Mater. 6 1800275
Google Scholar
[70] Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127
Google Scholar
[71] Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823
Google Scholar
[72] Gramotnev D K, Bozhevolnyi S I 2010 Nature Photon. 4 83
Google Scholar
[73] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667
Google Scholar
[74] Fasel S, Robin F, Moreno E, Erni D, Gisin N, Zbinden H 2005 Phys. Rev. Lett. 94 110501
Google Scholar
[75] Economou E N 1969 Phys. Rev. 182 539
Google Scholar
[76] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nature Mater. 2 229
Google Scholar
[77] Takahara J, Yamagishi S, Taki H, Morimoto A, Kobayashi T 1997 Opt. Lett. 22 475
Google Scholar
[78] Onuki T, Watanabe Y, Nishio K, Tsuchiya T, Tani T, Tokizaki T 2003 J. Microsc. 210 284
Google Scholar
[79] Zia R, Schuller J A, Brongersma M L 2006 Phys. Rev. B 74 165415
Google Scholar
[80] Boardman A D, Aers G C, Teshima R 1981 Phys. Rev. B 24 5703
Google Scholar
[81] Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P, Xu H 2010 Phys. Rev. B 82 241402
Google Scholar
[82] Heeres R W, Kouwenhoven L P, Zwiller V 2013 Nature Nanotech. 8 719
Google Scholar
[83] Wang S M, Cheng Q Q, Gong Y X, Xu P, Sun C, Li L, Li T, Zhu S N 2016 Nat. Commun. 7 11490
Google Scholar
[84] Vest B, Dheur M C, Devaux É, Baron A, Rousseau E, Hugonin J P, Greffet J J, Messin G, Marquier F 2017 Science 356 1373
Google Scholar
[85] Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X, Chang W H, Chen L J, Shvets G, Shih C K, Gwo S 2012 Science 337 450
Google Scholar
[86] Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nature Mater. 10 110
Google Scholar
[87] Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y, Sun M, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, Nötzel R, Ning C Z, Smit M K 2009 Opt. Express 17 11107
Google Scholar
[88] Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204
Google Scholar
[89] Wang S, Chen H Z, Ma R M 2018 Nano Lett. 18 7942
Google Scholar
[90] Galanzha E I, Weingold R, Nedosekin D A, Sarimollaoglu M, Nolan J, Harrington W, Kuchyanov A S, Parkhomenko R G, Watanabe F, Nima Z, Biris A S, Plekhanov A I, Stockman M I, Zharov V P 2017 Nat. Commun. 8 15528
Google Scholar
[91] Ma R M, Oulton R F 2019 Nature Nanotech. 14 12
Google Scholar
[92] Ma R M, Ota S, Li Y, Yang S, Zhang X 2014 Nature Nanotech. 9 600
Google Scholar
[93] Wang X Y, Wang Y L, Wang S, Li B, Zhang X W, Dai L, Ma R M 2017 Nanophotonics 6 472
Google Scholar
[94] Hoang T B, Akselrod G M, Mikkelsen M H 2016 Nano Lett. 16 270
Google Scholar
[95] Liu R, Zhou Z K, Yu Y C, Zhang T, Wang H, Liu G, Wei Y, Chen H, Wang X H 2017 Phys. Rev. Lett. 118 237401
Google Scholar
[96] Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802
Google Scholar
[97] Lian H, Gu Y, Ren J, Zhang F, Wang L, Gong Q 2015 Phys. Rev. Lett. 114 193002
Google Scholar
[98] Lee J, Jo S D, Kim S E, Won Y Y, Lee B R, Lee H, Kim H 2017 Sci. Rep. 7 17327
Google Scholar
[99] Tian Y, Tatsuma T 2004 Chem. Commun. 10 1810
Google Scholar
[100] Tian Y, Tatsuma T 2005 J. Am. Chem. Soc. 127 7632
Google Scholar
[101] Hisatomi T, Kubota J, Domen K 2014 Chem. Soc. Rev. 43 7520
Google Scholar
[102] Qin L, Wang G, Tan Y 2018 Sci. Rep. 8 16198
Google Scholar
[103] Nan F, Ding S J, Ma L, Cheng Z Q, Zhong Y T, Zhang Y F, Qiu Y H, Li X, Zhou L, Wang Q Q 2016 Nanoscale 8 15071
Google Scholar
[104] Berry C W, Wang N, Hashemi M R, Unlu M, Jarrahi M 2013 Nat. Commun. 4 1622
Google Scholar
[105] Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 702 6030
[106] Leenheer A J, Narang P, Lewis N S, Atwater H A 2014 J. Appl. Phys. 115 134301
Google Scholar
[107] Wu K, Chen J, McBride J R, Lian T 2015 Science 349 632
Google Scholar
[108] Tan S, Argondizzo A, Ren J, Liu L, Zhao J, Petek H 2017 Nature Photon. 11 806
Google Scholar
[109] Rodin A S, Fogler M M, McLeod A S, Thiemens M, Lau C N, Keilmann F, Dominguez G, Andreev G O, Zhao Z, Wagner M, Zhang L M, Neto A H C, Fei Z, Basov D N, Bao W 2012 Nature 487 82
Google Scholar
[110] Badioli M, Huth F, Hillenbrand R, Osmond J, Chen J, Thongrattanasiri S, Alonso-González P, Camara N, Godignon P, Pesquera A, de Abajo F J G, Zurutuza Elorza A, Centeno A, Koppens F H L, Spasenović M 2012 Nature 487 77
Google Scholar
[111] Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418
Google Scholar
[112] Cao Y, Li X, Wang D, Fan X, Lu X, Zhang Z, Zeng C, Zhang Z 2014 Phys. Rev. B 90 245415
Google Scholar
[113] Cheng G, Wang D, Dai S, Fan X, Wu F, Li X, Zeng C 2018 Nanoscale 10 16314
Google Scholar
[114] Wang D, Fan X, Li X, Dai S, Wei L, Qin W, Wu F, Zhang H, Qi Z, Zeng C, Zhang Z, Hou J 2018 Nano Lett. 18 1373
Google Scholar
[115] Zhang L, Fu X L, Yang J Z 2014 Commun. Theor. Phys. 61 751
Google Scholar
[116] Chen W, Zhang S, Kang M, Liu W, Ou Z, Li Y, Zhang Y, Guan Z, Xu H 2018 Light: Sci. Appl. 7 56
Google Scholar
[117] Long J P, Simpkins B S 2015 ACS Photon. 2 130
Google Scholar
[118] Wu N, Feist J, Garcia-Vidal F J 2016 Phys. Rev. B 94 195409
Google Scholar
[119] del Pino J, Feist J, Garcia-Vidal F J 2015 New J. Phys. 17 053040
Google Scholar
[120] Rivera N, Kaminer I, Zhen B, Joannopoulos J D, Soljačić M 2016 Science 353 263
Google Scholar
[121] Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C 2013 Nature Photon. 7 128
Google Scholar
[122] Joel Y Z, Saikin S K, Zhu T, Onbasli M C, Ross C A, Bulovic V, Baldo M A 2016 Nat. Commun. 7 11783
Google Scholar
[123] Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243
Google Scholar
-
图 1 纳米间隙 (a) (Agn)2二聚物的静态极化率
${\alpha _{zz}}$ 与间隙S的关系; (b) 在(Ag18)2,t-t二聚物中转移电荷Q与S的函数[19]; (c) 利用TDLDA计算(点)与经典电磁场计算(线)二聚体等离激元能; (d) 三种体系中的等离激元相互作用; 随着腔宽度d的减小, 从模拟的近场分布中提取的每种模式的横向限制宽度w[18]Fig. 1. Field in nano gap: (a) Static polarizability
${\alpha _{zz}}$ of${\left( {{\rm{A}}{{\rm{g}}_n}} \right)_2}$ dimer as a function of gap size S; (b) transferred charge Q as a function of S in${\left( {{\rm{A}}{{\rm{g}}_{18}}} \right)}$ 2,t-t ; (c) comparison between TDLDA results (dots) and classical results (lines) for the plasmon energy of the dimer; (d) plasmonic interactions within the three regimes; the lateral confinement width w of each mode, extracted from the simulated near-field distribution, as the cavity width d is reduced[18].图 3 混合系统在不同耦合强度
${V_{\rm{c}}}$ 和${V_{\rm{p}}}$ 下光谱特征的理论计算 (a), (c)固定${V_{\rm{p}}}$ 时不同${V_{\rm{c}}}$ 的吸收光谱; (b), (d) 固定${V_{\rm{c}}}$ 时不同${V_{\rm{p}}}$ 的吸收光谱[48]Fig. 3. Theoretically calculated spectral features of the hybrid systems at different coupling strengths
${V_{\rm{c}}}$ and${V_{\rm{p}}}$ : The absorption spectra at (a), (c) different${V_{\rm{c}}}$ with a fixed${V_{\rm{p}}}$ and (b), (d) different${V_{\rm{p}}}$ with a fixed${V_{\rm{c}}}$ [48]图 5 等离激元回路 (a), (b) 由级联OR和NOT门构建的NOR逻辑门示意图及 设计的Ag NW结构的光学图像[9]; (c), (d) 由三个PDBS (polarization dependent beam-splitters)组成的简化CNOT门(controlled-NOT gate)示意图
Fig. 5. Plasmonic circuits: (a) Schematic illustration of logic gate NOR built by cascaded OR and NOT gates; (b) optical image of the designed Ag NW structure[9]; (c), (d) schematic of the simplified CNOT gate composed of three PDBSs
图 6 等离激元激光器设计进展 (a) 混合纳米颗粒结构图; (b) 金核的透射电镜图像[10]; (c) 等离激元激光器的结构示意图; (d) 发生激射时的电场分布[11]; (e), (f) 等离激元激光器的结构示意图[85]
Fig. 6. Spaser design: (a) Diagram of the hybrid nanoparticle architecture; (b) transmission electron microscope image of Au core[10]; (c) schematic of the plasmonic laser; (d) the stimulated electric field distribution at laser frequency[11]; (e), (f) schematic of the plasmonic laser[85]
图 7 超快室温单光子发射源 (a) 在银纳米管和金膜间隙中的单个胶体量子点图示; (b) 嵌入纳米腔中的单个量子点的横截面示意图; (c) 随机定向偶极子的自发辐射率相对于自由空间率的模拟增强[94]
Fig. 7. Ultrafast room-temperature single photon emission: (a) Illustration of a single colloidal QD in the gap between a silver nanocube and a gold film; (b) cross-sectional schematic of a single QD embedded in the nanocavity; (c) simulated enhancement in the spontaneous emission rate relative to the free space rate[94]
图 8 金属-半导体电荷分离路径 (a) PHET机制, 其中金属中的光激发等离激元通过朗道阻尼衰变为热电子-空穴对, 然后将热电子注入半导体导带; (b) 金属中电子通过DICTT路径直接进入半导体导带的光激发; (c) PICTT机制, 等离激元通过直接在半导体导带中产生电子和在金属中形成空穴而衰变[107]
Fig. 8. Metal-to-semiconductor charge-separation pathways: (a) The PHET mechanism, in which a photoexcited plasmon decays into a hot electron-hole pair through Landau damping, followed by injection of the hot electron into the CB of the semiconductor; (b) optical excitation of an electron in the metal directly into the CB of the semiconductor through the DICTT pathway; (c) the PICTT pathway, where the plasmon decays by directly creating an electron in the CB of the semiconductor and a hole in the metal[107]
图 9 二维材料与等离激元光子学 (a) 扫描近场测量示意图; (b) 一种潜在的等离激元反射的可调谐性[112]; (c) 利用硅针尖获得的典型近场振幅图像, 红线显示了相应的等离激元振荡行为; (d)观测结果的理论拟合, 浅蓝色点是实验结果, 黑色实线代表理论拟合, 包括不同激发对振幅的贡献[113]; (e) 使用二维原子晶体探针探测定向等离激元增强; (f) 纳米腔体系的拉曼散射光谱[116]
Fig. 9. Plasmonics in two-dimensional materials: (a) Schematic of the scanning near-field measurements; (b)tunability of plasmon reflection at a potential step[112]; (c) typical near-field amplitude image obtained utilizing a silicon tip, the red line profile shows the corresponding oscillating behavior; (d) theoretical fitting of the observed profile, the light blue points are the experimental results, and the black solid line represents the theoretical fitting, which includes the contributions from the different excitations[113]; (e) probing directional plasmonic enhancements using a two-dimensional atomic crystal probe; (f) Raman scattering spectra of the nanocavity system[116]
-
[1] Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
Google Scholar
[2] Nie S, Emory S R 1997 Science 275 5303
Google Scholar
[3] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667
Google Scholar
[4] Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402
Google Scholar
[5] Atwater H A, Polman A 2010 Nature Mater. 9 205
Google Scholar
[6] Srituravanich W, Fang N, Sun C, Luo Q, Zhang X 2004 Nano Lett. 4 1085
Google Scholar
[7] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
Google Scholar
[8] Engheta N 2007 Science 317 1698
Google Scholar
[9] Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387
Google Scholar
[10] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U 2009 Nature 460 1110
Google Scholar
[11] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629
Google Scholar
[12] Tong L, Wei H, Zhang S, Xu H 2014 Sensors (Switzerland)
14 7959 Google Scholar
[13] Pines D, Bohm D 1952 Phys. Rev. 85 338
Google Scholar
[14] Ritchie R H 1957 Phys. Rev. 106 874
Google Scholar
[15] Powell C J, Swan J B 1959 Phys. Rev. 115 869
Google Scholar
[16] Elson J M, Ritchie R H 1971 Phys. Rev. B 4 4129
Google Scholar
[17] Hopfield J J 1958 Phys. Rev. 112 1555
Google Scholar
[18] Zuloaga J, Prodan E, Nordlander P 2009 Nano Lett. 9 887
Google Scholar
[19] Zhao K, Troparevsky M C, Xiao D, Eguiluz A G, Zhang Z 2009 Phys. Rev. Lett. 102 186804
Google Scholar
[20] Cheng G, Qin W, Lin M H, Wei L, Fan X, Zhang H, Gwo S, Zeng C, Hou J G, Zhang Z 2017 Phys. Rev. Lett. 119 156803
Google Scholar
[21] Brongersma M L, Halas N J, Nordlander P 2015 Nature Nanotech. 10 25
Google Scholar
[22] Clavero C 2014 Nat. Photon. 8 95
[23] Kolesov R, Grotz B, Balasubramanian G, Stöhr R J, Nicolet A A L, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nature Phys. 5 470
Google Scholar
[24] Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal F J 2011 Phys. Rev. Lett. 106 020501
Google Scholar
[25] Altewischer E, van Exter M P, Woerdman J P 2002 Nature 418 304
Google Scholar
[26] Moreno E, García-Vidal F J, Erni D, Cirac J I, Martín-Moreno L 2004 Phys. Rev. Lett. 92 236801
Google Scholar
[27] Huck A, Smolka S, Lodahl P, Sørensen A S, Boltasseva A, Janousek J, Andersen U L 2009 Phys. Rev. Lett. 102 246802
Google Scholar
[28] Wei H, Pan D, Xu H 2015 Nanoscale 7 19053
Google Scholar
[29] Bergman D J, Stockman M I 2003 Phys. Rev. Lett. 90 27402
Google Scholar
[30] Li X, Teng A, Özer M M, Shen J, Weitering H H, Zhang Z 2014 New J. Phys. 16 065014
Google Scholar
[31] Li X, Xiao D, Zhang Z 2013 New J. Phys. 15 023011
Google Scholar
[32] Yuan Z, Gao S 2006 Phys. Rev. B 73 155411
Google Scholar
[33] Eguiluz A G 1985 Phys. Rev. B 31 3303
Google Scholar
[34] Ekardt W 1985 Phys. Rev. B 31 6360
Google Scholar
[35] Scholl J A, Koh A L, Dionne J A 2012 Nature 483 421
Google Scholar
[36] Savage K J, Hawkeye M M, Esteban R, Borisov A G, Aizpurua J, Baumberg J J 2012 Nature 491 574
Google Scholar
[37] Esteban R, Borisov A G, Nordlander P, Aizpurua J 2012 Nat. Commun. 3 825
Google Scholar
[38] Bennett A J 1970 Phys. Rev. B 1 203
Google Scholar
[39] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419
Google Scholar
[40] Faucheaux J A, Fu J, Jain P K 2014 J. Phys. Chem. C 118 2710
Google Scholar
[41] Törmä P, Barnes W L 2015 Rep. Prog. Phys. 78 013901
Google Scholar
[42] McMahon J M, Gray S K, Schatz G C 2009 Phys. Rev. Lett. 103 097403
Google Scholar
[43] Luo Y, Wiener A, Maier S A, Pendry J B 2013 Phys. Rev. Lett. 111 093901
Google Scholar
[44] Zhang W, Govorov A O, Bryant G W 2006 Phys. Rev. Lett. 97 146804
Google Scholar
[45] Artuso R D, Bryant G W 2008 Nano Lett. 8 2106
Google Scholar
[46] González-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801
Google Scholar
[47] Manjavacas A, García de Abajo F J, Nordlander P 2011 Nano Lett. 11 2318
Google Scholar
[48] Ding S J, Li X, Nan F, Zhong Y T, Zhou L, Xiao X, Wang Q Q, Zhang Z 2017 Phys. Rev. Lett. 119 177401
Google Scholar
[49] Tian G, Liu J C, Luo Y 2011 Phys. Rev. Lett. 106 177401
Google Scholar
[50] Kroner M, Govorov A O, Remi S, Biedermann B, Seidl S, Badolato A, Petroff P M, Zhang W, Barbour R, Gerardot B D, Warburton R J, Karrai K 2008 Nature 451 311
Google Scholar
[51] Nan F, Zhang Y F, Li X, Zhang X T, Li H, Zhang X, Jiang R, Wang J, Zhang W, Zhou L, Wang J H, Wang Q Q, Zhang Z 2015 Nano Lett. 15 2705
Google Scholar
[52] Lee J S, Huynh T, Lee S Y, Lee K G, Lee J, Tame M, Rockstuhl C, Lee C 2017 Phys. Rev. A 96 033833
Google Scholar
[53] Kim H T, Yu M 2019 Sci. Rep. 9 1922
Google Scholar
[54] Farcau C 2019 Sci. Rep. 9 3683
Google Scholar
[55] Alaeian H, Dionne J A 2014 Phys. Rev. A 89 033829
Google Scholar
[56] Hess O, Pendry J B, Maier S A, Oulton R F, Hamm J M, Tsakmakidis K L 2012 Nature Mater. 11 573
Google Scholar
[57] Sun M, Fang Y, Zhang Z, Xu H 2013 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 87 020401
Google Scholar
[58] Steidtner J, Pettinger B 2008 Phys. Rev. Lett. 100 236101
Google Scholar
[59] Ichimura T, Fujii S, Verma P, Yano T, Inouye Y, Kawata S 2009 Phys. Rev. Lett. 102 186101
Google Scholar
[60] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82
Google Scholar
[61] Zhong J H, Jin X, Meng L, Wang X, Su H S, Yang Z L, Williams C T, Ren B 2017 Nature Nanotech. 12 132
Google Scholar
[62] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2010 Nature Photon. 4 50
Google Scholar
[63] Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225
Google Scholar
[64] Wang H F, Chen G, Li X G, Dong Z C 2018 Chin. J. Chem. Phys. 31 263
Google Scholar
[65] Chen G, Li X G, Dong Z C 2015 Chin. J. Chem. Phys. 28 552
Google Scholar
[66] Chen G, Li X G, Zhang Z Y, Dong Z C 2015 Nanoscale 7 2442
Google Scholar
[67] Chen G, Luo Y, Gao H Y, Jiang J, Yu Y J, Zhang L, Zhang Y, Li X G, Zhang Z Y, Dong Z C 2019 Phys. Rev. Lett. 122 177401
Google Scholar
[68] Li G C, Zhang Q, Maier S A, Lei D 2018 Nanophotonics 7 1865
Google Scholar
[69] Li X, Zhou L, Hao Z, Wang Q Q 2018 Adv. Opt. Mater. 6 1800275
Google Scholar
[70] Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127
Google Scholar
[71] Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823
Google Scholar
[72] Gramotnev D K, Bozhevolnyi S I 2010 Nature Photon. 4 83
Google Scholar
[73] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667
Google Scholar
[74] Fasel S, Robin F, Moreno E, Erni D, Gisin N, Zbinden H 2005 Phys. Rev. Lett. 94 110501
Google Scholar
[75] Economou E N 1969 Phys. Rev. 182 539
Google Scholar
[76] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nature Mater. 2 229
Google Scholar
[77] Takahara J, Yamagishi S, Taki H, Morimoto A, Kobayashi T 1997 Opt. Lett. 22 475
Google Scholar
[78] Onuki T, Watanabe Y, Nishio K, Tsuchiya T, Tani T, Tokizaki T 2003 J. Microsc. 210 284
Google Scholar
[79] Zia R, Schuller J A, Brongersma M L 2006 Phys. Rev. B 74 165415
Google Scholar
[80] Boardman A D, Aers G C, Teshima R 1981 Phys. Rev. B 24 5703
Google Scholar
[81] Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P, Xu H 2010 Phys. Rev. B 82 241402
Google Scholar
[82] Heeres R W, Kouwenhoven L P, Zwiller V 2013 Nature Nanotech. 8 719
Google Scholar
[83] Wang S M, Cheng Q Q, Gong Y X, Xu P, Sun C, Li L, Li T, Zhu S N 2016 Nat. Commun. 7 11490
Google Scholar
[84] Vest B, Dheur M C, Devaux É, Baron A, Rousseau E, Hugonin J P, Greffet J J, Messin G, Marquier F 2017 Science 356 1373
Google Scholar
[85] Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X, Chang W H, Chen L J, Shvets G, Shih C K, Gwo S 2012 Science 337 450
Google Scholar
[86] Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nature Mater. 10 110
Google Scholar
[87] Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y, Sun M, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, Nötzel R, Ning C Z, Smit M K 2009 Opt. Express 17 11107
Google Scholar
[88] Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204
Google Scholar
[89] Wang S, Chen H Z, Ma R M 2018 Nano Lett. 18 7942
Google Scholar
[90] Galanzha E I, Weingold R, Nedosekin D A, Sarimollaoglu M, Nolan J, Harrington W, Kuchyanov A S, Parkhomenko R G, Watanabe F, Nima Z, Biris A S, Plekhanov A I, Stockman M I, Zharov V P 2017 Nat. Commun. 8 15528
Google Scholar
[91] Ma R M, Oulton R F 2019 Nature Nanotech. 14 12
Google Scholar
[92] Ma R M, Ota S, Li Y, Yang S, Zhang X 2014 Nature Nanotech. 9 600
Google Scholar
[93] Wang X Y, Wang Y L, Wang S, Li B, Zhang X W, Dai L, Ma R M 2017 Nanophotonics 6 472
Google Scholar
[94] Hoang T B, Akselrod G M, Mikkelsen M H 2016 Nano Lett. 16 270
Google Scholar
[95] Liu R, Zhou Z K, Yu Y C, Zhang T, Wang H, Liu G, Wei Y, Chen H, Wang X H 2017 Phys. Rev. Lett. 118 237401
Google Scholar
[96] Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802
Google Scholar
[97] Lian H, Gu Y, Ren J, Zhang F, Wang L, Gong Q 2015 Phys. Rev. Lett. 114 193002
Google Scholar
[98] Lee J, Jo S D, Kim S E, Won Y Y, Lee B R, Lee H, Kim H 2017 Sci. Rep. 7 17327
Google Scholar
[99] Tian Y, Tatsuma T 2004 Chem. Commun. 10 1810
Google Scholar
[100] Tian Y, Tatsuma T 2005 J. Am. Chem. Soc. 127 7632
Google Scholar
[101] Hisatomi T, Kubota J, Domen K 2014 Chem. Soc. Rev. 43 7520
Google Scholar
[102] Qin L, Wang G, Tan Y 2018 Sci. Rep. 8 16198
Google Scholar
[103] Nan F, Ding S J, Ma L, Cheng Z Q, Zhong Y T, Zhang Y F, Qiu Y H, Li X, Zhou L, Wang Q Q 2016 Nanoscale 8 15071
Google Scholar
[104] Berry C W, Wang N, Hashemi M R, Unlu M, Jarrahi M 2013 Nat. Commun. 4 1622
Google Scholar
[105] Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 702 6030
[106] Leenheer A J, Narang P, Lewis N S, Atwater H A 2014 J. Appl. Phys. 115 134301
Google Scholar
[107] Wu K, Chen J, McBride J R, Lian T 2015 Science 349 632
Google Scholar
[108] Tan S, Argondizzo A, Ren J, Liu L, Zhao J, Petek H 2017 Nature Photon. 11 806
Google Scholar
[109] Rodin A S, Fogler M M, McLeod A S, Thiemens M, Lau C N, Keilmann F, Dominguez G, Andreev G O, Zhao Z, Wagner M, Zhang L M, Neto A H C, Fei Z, Basov D N, Bao W 2012 Nature 487 82
Google Scholar
[110] Badioli M, Huth F, Hillenbrand R, Osmond J, Chen J, Thongrattanasiri S, Alonso-González P, Camara N, Godignon P, Pesquera A, de Abajo F J G, Zurutuza Elorza A, Centeno A, Koppens F H L, Spasenović M 2012 Nature 487 77
Google Scholar
[111] Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418
Google Scholar
[112] Cao Y, Li X, Wang D, Fan X, Lu X, Zhang Z, Zeng C, Zhang Z 2014 Phys. Rev. B 90 245415
Google Scholar
[113] Cheng G, Wang D, Dai S, Fan X, Wu F, Li X, Zeng C 2018 Nanoscale 10 16314
Google Scholar
[114] Wang D, Fan X, Li X, Dai S, Wei L, Qin W, Wu F, Zhang H, Qi Z, Zeng C, Zhang Z, Hou J 2018 Nano Lett. 18 1373
Google Scholar
[115] Zhang L, Fu X L, Yang J Z 2014 Commun. Theor. Phys. 61 751
Google Scholar
[116] Chen W, Zhang S, Kang M, Liu W, Ou Z, Li Y, Zhang Y, Guan Z, Xu H 2018 Light: Sci. Appl. 7 56
Google Scholar
[117] Long J P, Simpkins B S 2015 ACS Photon. 2 130
Google Scholar
[118] Wu N, Feist J, Garcia-Vidal F J 2016 Phys. Rev. B 94 195409
Google Scholar
[119] del Pino J, Feist J, Garcia-Vidal F J 2015 New J. Phys. 17 053040
Google Scholar
[120] Rivera N, Kaminer I, Zhen B, Joannopoulos J D, Soljačić M 2016 Science 353 263
Google Scholar
[121] Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C 2013 Nature Photon. 7 128
Google Scholar
[122] Joel Y Z, Saikin S K, Zhu T, Onbasli M C, Ross C A, Bulovic V, Baldo M A 2016 Nat. Commun. 7 11783
Google Scholar
[123] Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243
Google Scholar
计量
- 文章访问数: 14703
- PDF下载量: 580
- 被引次数: 0