-
Circular dichroism effects have been widely used in circular polarizers, optical modulators and optoelectronic devices. Periodically arranged artificial metal chiral nanostructures has a strong electromagnetic coupling effect with light, which can greatly increase the interaction between the light and matter. Three-dimensional helix and helix-like chiral nanostructures show a larger circular dichroism effect due to the strong interactions between electric and magnetic resonance. The double-layer structures also can produce large circular dichroism, which signals also results from electric dipoles with different orientations between the two layers. Although the three dimensional plasmonic structures have shown large circular dichroism signals, however, three dimensional devices hold disadvantages in wide practical applications because of their complicated fabricating process, especially at micro- and nanoscales. Recent years, circular dichroism signals of planar nanostructures have been studied owing to their easy fabrication and wide potential applications. The resonance mode of planar metal nanostructures is sensitive to the shape, geometry, materials and surrounding environment of nanostructures, which provides a feasible technical approach for adjusting the circular dichroism signal of planar metal nanostructures. In this article, larger circular dichroism signals are realized through planar composite golden nanostructures, which composed of infinite long nanowire and G-shaped nanostructure. The absorption spectra, surface charge distributions at resonance wavelength of planar composite golden nanostructure are calculated by finite element method. For comparison, a circular dichroism signal with only G-shaped nanostructures is also studied. The numerical results show that under the illumination of right-handed polarized and left-handed polarized light, the planar composite golden nanostructure and G-shaped nanostructure exhibit electric dipole, quadrupolar, octupolar resonance modes, respectively. When the G-shaped nanostructure is connected to an infinitely long nanowire, all resonance peaks have a red shift and infinitely long nanowire increases the local surface resonance intensity under different circularly polarized light excitation. Therefore, it significantly enhances the circular dichroism signal of the planar composite golden nanostructure. At the same time, the influence of geometric parameters such as the different length of each nanorod of the G-shaped nanostructure and the thickness of the infinitely length nanowire on the circular dichroism modes are also studied. The findings may provide some guideline and methods for improving the circular dichroism signal of planar chiral nanostructure.
-
Keywords:
- chiral nanostructure /
- absorption properties /
- circular dichroism /
- surface plasmon
[1] Zheng Z G, Li Y, Bisoyi H K, Wang L, Bunning T J, Li Q 2016 Nature 531 352Google Scholar
[2] Karimi E, Schulz S A, De L I, Qassim H, Upham J, Boyd R W 2014 Light-Sci. Appl. 3 167Google Scholar
[3] 杨傅子 2014 64 124214Google Scholar
Yang F Z 2014 Acta Phys. Sin. 64 124214Google Scholar
[4] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, SaileV, Wegener M 2009 Science 325 5947Google Scholar
[5] Khanikaev A B, Arju N, Fan Z, Purtseladze D, Lu F, Lee J, Sarriugarte P, Schnell M, Hillenbrand R, Belkin M A, Shvets G 2016 Nat. Commun. 7 12045Google Scholar
[6] Sun M, Zhang Z, Wang P, Li Q, Ma F, X Hong 2013 Light-Sci. Appl. 2 e112Google Scholar
[7] 李杰, 杨方清, 董建峰 2011 60 124214Google Scholar
Li J, Yang F Q, Dong J F 2011 Acta Phys. Sin. 60 124214Google Scholar
[8] Pendry J B 2004 Science 306 1353Google Scholar
[9] 苏妍妍, 龚伯仪, 赵晓鹏 2012 61 084102Google Scholar
Su Y Y, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 084102Google Scholar
[10] Maoz B M, Weegen R, Fan Z, Govorov A O, Ellestad G, Berova N, G Markovich 2012 J. Am. Chem. Soc. 134 17807Google Scholar
[11] Zhu F, Li X, Li Y, Yan M, Liu S 2014 Anal. Chem. 87 357Google Scholar
[12] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kadodwala M 2010 Nat. Nanotechnol. 5 783Google Scholar
[13] Mochida Y, Cabral H, Miura Y, Albertini F, Fukushima S, Osada K, Kataoka K 2014 ACS Nano 8 6724Google Scholar
[14] Narushima T, Okamoto H 2013 J. Phys. Chem. 117 23964Google Scholar
[15] Narushima T, Hashiyada S, Okamoto H 2014 ACS Photonics 1 732Google Scholar
[16] Dietrich K, Lehr D, Helgert C, Tünnermann A, Kley E B 2012 Adv. Mater. 24 321Google Scholar
[17] Yin X H, Schaferling M, Metzger B, Giessen H 2013 Nano Lett. 13 6238Google Scholar
[18] Larsen G K, Zhao Y P 2014 Appl. Phys. Lett. 105 071109Google Scholar
[19] Gansel J K, Latzel M, Frolich A, Kaschke J, Thiel M, Wegener M 2015 Appl. Phys. Lett. 100 101109iGoogle Scholar
[20] Decker M, Zhao R, Soukoulis C M, Linden S, Wegener M 2010 Opt. Lett. 35 1593Google Scholar
[21] Liu N, Liu H, Zhu S, Giessen, Harald 2009 Nat. Photonics 3 157Google Scholar
[22] Jing Z, Bai Y, Wang T, Ullah H, Li Y, Zhang Z Y 2019 J. Opt. Soc. Am. B 36 2721Google Scholar
[23] Hwang Y, Lee Se, Kim S, Lin J, Yuan X C 2018 ACS Photonics 5 4538Google Scholar
[24] Valev V K, Smisdom N, Silhanek A V, Clercq B D, Gillijins W, Ameloot M, Moshchalkov V T 2009 Nano Lett. 9 3945Google Scholar
[25] Hendry E, Carpy T, Johnston J 2010 Nature Nanotechnology 5 783
[26] Zu S, Bao Y, Fang Z 2016 Nanoscale 8 3900Google Scholar
[27] Knipper R, Mayerhofer T G, Kopecky V, Huebner J U, Popp J 2018 ACS Photonics 5 1176Google Scholar
[28] Yannopapas V 2009 Opt. Lett. 32 632Google Scholar
[29] Feng C, Wang Z B, Lee S, Jiao J, Li L 2012 Opt. Commun. 2 245Google Scholar
[30] Yan C, Martin O J F 2014 ACS Nano 8 11860Google Scholar
[31] Tian X, Fang Y, Sun M 2015 Sci. Rep. 5 17534Google Scholar
-
图 2 PCMN和GNS阵列的吸收光谱以及CD光谱 (a), (c) PCMN和GNS阵列的A+, A–光谱; (b), (d)PCMN阵列和GNS阵列的CD光谱; 其中插图分别表示PCMN和GNS在xy平面的结构示意图
Figure 2. Absorption and CD spectra of PCMN and GNS arrays: (a), (c) Simulated A–, A+ spectra; (b), (d) CD spectra of PCMN and GNS arrays. The insert figures indicate the structure schematic of PCMN and GNS in x-y plane, respectively.
图 3 不同偏振的入射光照射在PCMN和GNS时, 在共振波长处的表面电荷密度分布; 图(a), (b), (c), (d), (i), (j), (k)和(l)是为左旋偏振光; 图(e), (f), (g), (h), (m), (n), (o)和(p)是为右旋偏振光
Figure 3. Surface charge density distribution of proposed PCMN and GNS at the resonant wavelength with different circularly polarized illuminations: (a), (b), (c), (d), (i), (j), (k) and (l) for LCP light; (e), (f), (g), (h), (m), (n), (o) and (p) for RCP light.
图 4 PCMN阵列不同参数的CD光谱. 不同长度的(a) l1, (b) l2, (c) l3, (d) l4, (e) l5纳米棒和(f)不同无限长纳米线宽度w1的PCMN阵列的CD光谱
Figure 4. CD spectra of PCMN arrays with different parameter; CD spectraof PCMN arrays with (a) different l1 (b) different l2, (c) different l3, (d) different l4, (e) different l5 nanorod and (f) different w1 of the infinite long nanowire.
图 5 断开的PCMN阵列的吸收光谱和CD光谱 (a)吸收光谱; (b) CD光谱. 插图表示分别在共振波长处的电荷分布(深红-蓝色)和断开的PCMN在xy平面上的结构示意图(黄色)
Figure 5. Absorption and CD spectra of the separated PCMN arrays: (a) Absorption spectrum; (b) CD spectrum; The insert figures indicate the charge distribution at resonance wavelength (crimson and blue), and structure schematic (yellow) of separated PCMN in xy plane.
-
[1] Zheng Z G, Li Y, Bisoyi H K, Wang L, Bunning T J, Li Q 2016 Nature 531 352Google Scholar
[2] Karimi E, Schulz S A, De L I, Qassim H, Upham J, Boyd R W 2014 Light-Sci. Appl. 3 167Google Scholar
[3] 杨傅子 2014 64 124214Google Scholar
Yang F Z 2014 Acta Phys. Sin. 64 124214Google Scholar
[4] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, SaileV, Wegener M 2009 Science 325 5947Google Scholar
[5] Khanikaev A B, Arju N, Fan Z, Purtseladze D, Lu F, Lee J, Sarriugarte P, Schnell M, Hillenbrand R, Belkin M A, Shvets G 2016 Nat. Commun. 7 12045Google Scholar
[6] Sun M, Zhang Z, Wang P, Li Q, Ma F, X Hong 2013 Light-Sci. Appl. 2 e112Google Scholar
[7] 李杰, 杨方清, 董建峰 2011 60 124214Google Scholar
Li J, Yang F Q, Dong J F 2011 Acta Phys. Sin. 60 124214Google Scholar
[8] Pendry J B 2004 Science 306 1353Google Scholar
[9] 苏妍妍, 龚伯仪, 赵晓鹏 2012 61 084102Google Scholar
Su Y Y, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 084102Google Scholar
[10] Maoz B M, Weegen R, Fan Z, Govorov A O, Ellestad G, Berova N, G Markovich 2012 J. Am. Chem. Soc. 134 17807Google Scholar
[11] Zhu F, Li X, Li Y, Yan M, Liu S 2014 Anal. Chem. 87 357Google Scholar
[12] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kadodwala M 2010 Nat. Nanotechnol. 5 783Google Scholar
[13] Mochida Y, Cabral H, Miura Y, Albertini F, Fukushima S, Osada K, Kataoka K 2014 ACS Nano 8 6724Google Scholar
[14] Narushima T, Okamoto H 2013 J. Phys. Chem. 117 23964Google Scholar
[15] Narushima T, Hashiyada S, Okamoto H 2014 ACS Photonics 1 732Google Scholar
[16] Dietrich K, Lehr D, Helgert C, Tünnermann A, Kley E B 2012 Adv. Mater. 24 321Google Scholar
[17] Yin X H, Schaferling M, Metzger B, Giessen H 2013 Nano Lett. 13 6238Google Scholar
[18] Larsen G K, Zhao Y P 2014 Appl. Phys. Lett. 105 071109Google Scholar
[19] Gansel J K, Latzel M, Frolich A, Kaschke J, Thiel M, Wegener M 2015 Appl. Phys. Lett. 100 101109iGoogle Scholar
[20] Decker M, Zhao R, Soukoulis C M, Linden S, Wegener M 2010 Opt. Lett. 35 1593Google Scholar
[21] Liu N, Liu H, Zhu S, Giessen, Harald 2009 Nat. Photonics 3 157Google Scholar
[22] Jing Z, Bai Y, Wang T, Ullah H, Li Y, Zhang Z Y 2019 J. Opt. Soc. Am. B 36 2721Google Scholar
[23] Hwang Y, Lee Se, Kim S, Lin J, Yuan X C 2018 ACS Photonics 5 4538Google Scholar
[24] Valev V K, Smisdom N, Silhanek A V, Clercq B D, Gillijins W, Ameloot M, Moshchalkov V T 2009 Nano Lett. 9 3945Google Scholar
[25] Hendry E, Carpy T, Johnston J 2010 Nature Nanotechnology 5 783
[26] Zu S, Bao Y, Fang Z 2016 Nanoscale 8 3900Google Scholar
[27] Knipper R, Mayerhofer T G, Kopecky V, Huebner J U, Popp J 2018 ACS Photonics 5 1176Google Scholar
[28] Yannopapas V 2009 Opt. Lett. 32 632Google Scholar
[29] Feng C, Wang Z B, Lee S, Jiao J, Li L 2012 Opt. Commun. 2 245Google Scholar
[30] Yan C, Martin O J F 2014 ACS Nano 8 11860Google Scholar
[31] Tian X, Fang Y, Sun M 2015 Sci. Rep. 5 17534Google Scholar
Catalog
Metrics
- Abstract views: 8072
- PDF Downloads: 158
- Cited By: 0