搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究

郭钊 陆斌 蒋雪 赵纪军

引用本文:
Citation:

幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究

郭钊, 陆斌, 蒋雪, 赵纪军

Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations

Guo Zhao, Lu Bin, Jiang Xue, Zhao Ji-Jun
PDF
导出引用
  • 基于密度泛函理论,采用第一性原理分子动力学模拟退火方法,对Li-n-1,Lin,Li+n+1 (n=20,40)的最低能量结构进行了全局搜索. 发现锂团簇的生长模式是以单个或多个嵌套的正多面体为核心,其余原子以五角锥为基本单元围绕核心生长. 基于最低能量结构的第一性原理电子结构计算得到锂团簇的分子轨道能级分布与无结构凝胶模型给出的电子壳层完全一致. 在总电
    The lowest-energy structures of Li-n-1, Lin and Li+n+1 clusters (n=20, 40) were determined from first-principles simulated annealing followed by geometry optimization within the density functional theory. The growth mechanism of Lin clusters is based on nested multiple polyhedron. Other atoms form pentagonal pyramid centered on the core polyhedron. From our first-principles calculations, the molecular orbital levels can be divided into several groups, which are in good agreement with the electron shells described by structureless jellium model. With the same amount of valence electrons, the number of ions and charge states in the Li clusters have only little effect on the electronic structures. Li-19, Li20, Li+21 and Li-39, Li40, Li+41 exhibit similar energy level distributions, respectively, indicating that the momentum order is the dominating factor for these clusters. The optical absorption spectra of Li-n-1, Lin and Li+n+1 (n=20, 40) clusters from time-dependent density functional theory calculations show giant resonance phenomenon and the simulated resonance peaks agree with experimental values. With same amount of valence electrons, the polarizability decreases with the number of ions and the optical resonance peaks blueshift as the ionic number increases.
    • 基金项目: 大学生创新性实验计划(批准号:081014115) 和教育部新世纪优秀人才支持计划(批准号:NCET-06-0281)资助的课题.
    [1]

    Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李 兵、杨传路、齐凯天、张 岩、盛 勇 2009 58 3104]

    [2]

    Chen L, Xu C, Zhang X F 2009 Acta Phys. Sin. 58 1603(in Chinese)[陈 亮、徐 灿、张小芳 2009 58 1603]

    [3]

    Lu Z H, Cao J X, 2008 Chin. Phys. B 17 3336

    [4]

    Zhang C R, Chen Y H, Wang D B, Wu Y Z, Chen H S 2008 Chin. Phys. B 17 2938

    [5]

    Ellert C, Schmidt M, Schmitt C, Haberland H, Guet C 1999 Phys. Rev. B 59 R7841

    [6]

    Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141

    [7]

    de Heer W A 1993 Rev. Mod. Phys. 65 611

    [8]

    Yannouleas C, Vigezzi E, Broglia R A 1993 Phys. Rev. B 47 9849

    [9]

    Bréchignac C, Connerade J P 1994 J. Phys. B 27 3795

    [10]

    Kornath A, Kaufmann A, Zoermer A, Ludwig R 2003 J. Chem. Phys. 118 6957

    [11]

    Bréchignac C, Cahuzac P, Leygnier J, Sarfati A 1993 Phys. Rev. Lett. 70 2036

    [12]

    Bréchignac C, Busch H, Cahuzac P, Leygnier J 1994 J. Chem. Phys. 101 6992

    [13]

    Dugourd P, Rayane D, Labastie P, Vezin B, Chevaleyre J, Broyer M 1992 Chem. Phys. Lett. 197 433

    [14]

    Benichou E, Antoine R, Rayane D, Vezin B, Dalby F W, Dugourd P, Broyer M, Ristori C, Chandezon F, Huber B A, Rocco J C, Blundell S A, Guet C 1999 Phys. Rev. A 59 R1

    [15]

    Antoine R, Rayane D, Allouche A R, Aubert-Frecon M, Benichou E, Dalby F W, Dugourd P, Broyer M, Guet C 1999 J. Chem. Phys. 110 5568

    [16]

    Rao B K, Jena P 1985 Phys. Rev. B 32 2058

    [17]

    Rao B K, Jena P, Manninen M 1985 Phys. Rev. B 32 477

    [18]

    Wang F, Andriopoulos N, Wright N, Nagy-Felsobuki E I 1991 J. Cluster Sci. 2 203

    [19]

    Boustani I, Pewestorf W, Fantucci P, Bonai Dc' -Kouteck V, Koutecky J 1987 Phys. Rev. B 35 9437

    [20]

    Sugino O, Kamimura H 1990 Phys. Rev. Lett. 65 2696

    [21]

    Wheeler S E, Schaefer III H F 2005 J. Chem. Phys. 122 204328

    [22]

    Gardet G, Rogemond F, Chermette H 1996 J. Chem. Phys. 105 9933

    [23]

    Fournier R, Cheng J B Y, Wong A 2003 J. Chem. Phys. 119 9444

    [24]

    Jose K V J, Gadre S R 2008 J. Chem. Phys. 129 164314

    [25]

    Chandrakumar K R S, Ghanty T K, Ghosh S K 2004 J. Phys. Chem. A 108 6661

    [26]

    Bréchignac C, Cahuzac P, Carlier F, Leygnier J 1989 Chem. Phys. Lett. 164 433

    [27]

    Dugourd P, Blanc J, Bona i Dc' -Kouteck V, Broyer M, Chevaleyre J, Koutecky J, Pittner J, Wolf J P, Wste L 1991 Phys. Rev. Lett. 67 2638

    [28]

    Blanc J, Bona i Dc' -Kouteck V, Broyer M, Chevaleyre J, Dugourd P, Koutecky J, Scheuch C, Wolf J P, Wste L 1992 J. Chem. Phys. 96 1793

    [29]

    Pacheco J M, Martins J L 1997 J. Chem. Phys. 106 6039

    [30]

    Blundell S A, Guet C 1995 Z. Phys. D 33 153

    [31]

    Yabana K, Bertsch G F 1995 Z. Phys. D 32 329

    [32]

    Harris J 1985 Phys. Rev. B 31 1770

    [33]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [34]

    Delley B 1990 J. Chem. Phys. 92 508

    [35]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [36]

    Beck T L 2000 Rev. Mod. Phys. 72 1041

    [37]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [38]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A, Gaussian 03 (Gaussian, Inc., Wallingford CT, 2004)

    [39]

    Li J, Li X, Zhai H J, Wang L S 2003 Science 299 864

    [40]

    Wang J, Wang G, Zhao J 2003 Chem. Phys. Lett. 380 716

    [41]

    Ekardt W 1984 Phys. Rev. B 29 1558

    [42]

    Bjφrnholm S 1990 Comtemp. Phys. 31 390

  • [1]

    Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李 兵、杨传路、齐凯天、张 岩、盛 勇 2009 58 3104]

    [2]

    Chen L, Xu C, Zhang X F 2009 Acta Phys. Sin. 58 1603(in Chinese)[陈 亮、徐 灿、张小芳 2009 58 1603]

    [3]

    Lu Z H, Cao J X, 2008 Chin. Phys. B 17 3336

    [4]

    Zhang C R, Chen Y H, Wang D B, Wu Y Z, Chen H S 2008 Chin. Phys. B 17 2938

    [5]

    Ellert C, Schmidt M, Schmitt C, Haberland H, Guet C 1999 Phys. Rev. B 59 R7841

    [6]

    Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141

    [7]

    de Heer W A 1993 Rev. Mod. Phys. 65 611

    [8]

    Yannouleas C, Vigezzi E, Broglia R A 1993 Phys. Rev. B 47 9849

    [9]

    Bréchignac C, Connerade J P 1994 J. Phys. B 27 3795

    [10]

    Kornath A, Kaufmann A, Zoermer A, Ludwig R 2003 J. Chem. Phys. 118 6957

    [11]

    Bréchignac C, Cahuzac P, Leygnier J, Sarfati A 1993 Phys. Rev. Lett. 70 2036

    [12]

    Bréchignac C, Busch H, Cahuzac P, Leygnier J 1994 J. Chem. Phys. 101 6992

    [13]

    Dugourd P, Rayane D, Labastie P, Vezin B, Chevaleyre J, Broyer M 1992 Chem. Phys. Lett. 197 433

    [14]

    Benichou E, Antoine R, Rayane D, Vezin B, Dalby F W, Dugourd P, Broyer M, Ristori C, Chandezon F, Huber B A, Rocco J C, Blundell S A, Guet C 1999 Phys. Rev. A 59 R1

    [15]

    Antoine R, Rayane D, Allouche A R, Aubert-Frecon M, Benichou E, Dalby F W, Dugourd P, Broyer M, Guet C 1999 J. Chem. Phys. 110 5568

    [16]

    Rao B K, Jena P 1985 Phys. Rev. B 32 2058

    [17]

    Rao B K, Jena P, Manninen M 1985 Phys. Rev. B 32 477

    [18]

    Wang F, Andriopoulos N, Wright N, Nagy-Felsobuki E I 1991 J. Cluster Sci. 2 203

    [19]

    Boustani I, Pewestorf W, Fantucci P, Bonai Dc' -Kouteck V, Koutecky J 1987 Phys. Rev. B 35 9437

    [20]

    Sugino O, Kamimura H 1990 Phys. Rev. Lett. 65 2696

    [21]

    Wheeler S E, Schaefer III H F 2005 J. Chem. Phys. 122 204328

    [22]

    Gardet G, Rogemond F, Chermette H 1996 J. Chem. Phys. 105 9933

    [23]

    Fournier R, Cheng J B Y, Wong A 2003 J. Chem. Phys. 119 9444

    [24]

    Jose K V J, Gadre S R 2008 J. Chem. Phys. 129 164314

    [25]

    Chandrakumar K R S, Ghanty T K, Ghosh S K 2004 J. Phys. Chem. A 108 6661

    [26]

    Bréchignac C, Cahuzac P, Carlier F, Leygnier J 1989 Chem. Phys. Lett. 164 433

    [27]

    Dugourd P, Blanc J, Bona i Dc' -Kouteck V, Broyer M, Chevaleyre J, Koutecky J, Pittner J, Wolf J P, Wste L 1991 Phys. Rev. Lett. 67 2638

    [28]

    Blanc J, Bona i Dc' -Kouteck V, Broyer M, Chevaleyre J, Dugourd P, Koutecky J, Scheuch C, Wolf J P, Wste L 1992 J. Chem. Phys. 96 1793

    [29]

    Pacheco J M, Martins J L 1997 J. Chem. Phys. 106 6039

    [30]

    Blundell S A, Guet C 1995 Z. Phys. D 33 153

    [31]

    Yabana K, Bertsch G F 1995 Z. Phys. D 32 329

    [32]

    Harris J 1985 Phys. Rev. B 31 1770

    [33]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [34]

    Delley B 1990 J. Chem. Phys. 92 508

    [35]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [36]

    Beck T L 2000 Rev. Mod. Phys. 72 1041

    [37]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [38]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A, Gaussian 03 (Gaussian, Inc., Wallingford CT, 2004)

    [39]

    Li J, Li X, Zhai H J, Wang L S 2003 Science 299 864

    [40]

    Wang J, Wang G, Zhao J 2003 Chem. Phys. Lett. 380 716

    [41]

    Ekardt W 1984 Phys. Rev. B 29 1558

    [42]

    Bjφrnholm S 1990 Comtemp. Phys. 31 390

  • [1] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理.  , 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [2] 郑治秀, 张林. Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算.  , 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [3]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质.  , 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [4] 任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春. 空位缺陷对-AgVO3电子结构和光吸收性能的影响.  , 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [5] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇.  , 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [6] 吴丽君, 随强涛, 张多, 张林, 祁阳. SimGen(m+n=9)团簇结构和电子性质的计算研究.  , 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [7] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台.  , 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [8] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [9] 鄂箫亮, 段海明. 利用Gupta势结合遗传算法研究ConCu55-n(n=0—55)混合团簇的结构演化及基态能量.  , 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [10] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究.  , 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [11] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究.  , 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [12] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究.  , 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [13] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究.  , 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [14] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究.  , 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [15] 常德远, 郑 凯, 卫 延, 李 彬, 傅永军, 魏 淮, 简水生. 铋镓共掺的高浓度掺铒石英基光纤中铒离子团簇率的实验研究.  , 2008, 57(1): 556-560. doi: 10.7498/aps.57.556
    [16] 方 芳, 蒋 刚, 王红艳. PdnPbm(n+m≤5)混合团簇的结构与光谱性质.  , 2006, 55(5): 2241-2248. doi: 10.7498/aps.55.2241
    [17] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认.  , 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [18] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质.  , 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [19] 郝静安, 郑浩平. Ga6N6团簇结构性质的理论计算研究.  , 2004, 53(4): 1044-1049. doi: 10.7498/aps.53.1044
    [20] 何春龙, 王 锋, 李家明. 团簇红外吸收谱的理论研究.  , 2003, 52(8): 1911-1915. doi: 10.7498/aps.52.1911
计量
  • 文章访问数:  8107
  • PDF下载量:  889
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-12
  • 修回日期:  2010-02-23
  • 刊出日期:  2011-01-15

/

返回文章
返回
Baidu
map