Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots

Zhai Shun-Cheng Guo Ping Zheng Ji-Ming Zhao Pu-Ju Suo Bing-Bing Wan Yun

Citation:

First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots

Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun,
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphite phase carbon nitride (g-C3N4) quantum dots have received much attention due to its good stability, water solubility, biological compatibility, non-toxicity as well as strong fluorescence characteristics. In order to enhance the light absorption and improve photocatalytic activities of the g-C3N4 quantum dots, theoretical studies are carried out on the O and S atoms doped (g-C3N4)6 quantum dots. First-principles calculations based on the density functional theory and time dependent density functional theory are performed to investigate the geometries, electronic structures and ultraviolet visible absorption spectra of O and S atoms doped (g-C3N4)6 quantum dots. The results show that the highest electron occupied molecular orbital-the lowest electron unoccupied molecular orbital (HOMO-LUMO) energy gap of doped (g-C3N4)6 quantum dots is significantly reduced though the CN bond lengths closely related to the impurities only change slightly. The calculated formation energies indicate that the O-doped (g-C3N4)6 quantum dots are more stable, and the O atom tends to substitute for N atom at the N3-site, while the S atoms prefer to substitute for N atom at the N8-site. The simulated spectra indicate that the doping of O and S in (g-C3N4)6 could improve the light absorption. Not only the absorption peaks are extended from the UV to the infrared region (e.g. 200-1600 nm), but also the corresponding absorption intensities are enhanced significantly by doping the O or S atoms with the appropriate concentration. The increase of proper impurity concentration will lead to a pronounced red shift in light absorption. The effect of doping site on the optical absorption property of (g-C3N4)6 quantum dots shows that the absorption intensity is mainly affected in the visible range, however, besides the influence on the absorption intensity, the light absorptions of some structures are also affected beyond 800 nm. Overall, the O atoms and S atoms have a substantially similar effect on the light absorption of the (g-C3N4)6 quantum dots, while the effects of these impurity atoms are different in the long wavelength region. Oxygen doping is better than sulfur doping in the absorption of (g-C3N4)6 quantum dots by comparing the doping of O and S. These first-principles studies give us a method to effectively improve the light absorption of g-C3N4 quantum dots, and could provide a theoretical reference for tuning its electronic optical properties and applications.
      Corresponding author: Guo Ping, 1121074564@qq.com;guoping@nwu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21673174), the Natural Science Foundation of Shanxi Province, China (Grant No. 2014JM2-1008), and the State Key Laboratory of Transient Optics and Photonic Technology 2015 Natural Open Fund, China (Grant No. SKLST200915).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R 2014 Chem. Sus. Chem. 7 690

    [3]

    Tan L L, Ong W J, Chai S P, Mohamed A R 2014 Chem. Commun. 50 6923

    [4]

    Chen Y, Wang B, Lin S, Zhang Y, Wang X 2014 J. Phys. Chem. C 118 29981

    [5]

    Ye C, Li J X, Li Z J, Li X B, Fan X B, Zhang L P, Chen B, Tung C H, Wu L Z 2015 ACS Catal. 5 6973

    [6]

    Zhang S L, Wang J X, Huang Y, Zeng M, Xu J 2015 J. Mater. Chem. A 3 10119

    [7]

    Umebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [8]

    Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G 2004 J. Am. Chem. Soc. 126 4782

    [9]

    Huang Z F, Song J, Pan L, Wang Z, Zhang X, Zou J J, Mi W, Zhang X, Wang L 2015 Nano Energy 12 646

    [10]

    Dong G, Zhao K, Zhang L 2012 Chem. Commun. 48 6178

    [11]

    Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 4646

    [12]

    Xu C, Han Q, Zhao Y, Wang L, Li Y, Qu L J 2015 J. Mater. Chem. A 3 1841

    [13]

    Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S 2016 Appl. Surf. Sci. 360 1016

    [14]

    Li Y, Hu Y, Zhao Y, Shi G Q, Deng L, Hou Y B, Qu L T 2011 Adv. Mater. 23 776

    [15]

    Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z 2012 Energy Environ. Sci. 5 6717

    [16]

    Zhang Z P, Zhang J, Chen N, Qu L T 2012 Energy Environ. Sci. 5 8869

    [17]

    Cao L, Sahu S, Anikumar P, Bunker C E, Xu J, Fernanodo K A S, Wang P, Guliants E A, Tackett K N, Sun Y P 2011 J. Am. Chem. Soc. 133 4754

    [18]

    Song Z P, Lin T R, Lin L H, Lin S, Fu F F, Wang X C, Guo L Q 2016 Angew. Chem. Int. Ed. 55 2773

    [19]

    Chan M H, Chen C W, Lee I J, Chan Y C, Tu D T, Hsiao M, Chen C H, Chen X Y, Liu R S 2016 Inorg. Chem. 55 10267

    [20]

    Fageria P, Uppala S, Nazir R, Gangopadhyay S, Chang C H, Basu M, Pande S 2016 Langmuir 32 10054

    [21]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76

    [22]

    Zhou J, Yang Y, Zhang C Y 2013 Chem. Commun. 49 8605

    [23]

    te Velde G, Bickelhaupt F M, Baerends E J, Fonseca G C, vanGisbergen S J A, Snijders J G, Ziegler T 2001 J. Comput. Chem. 22 931

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [26]

    Casida M E 2009 J. Mol. Struct:Theochem. 914 3

    [27]

    Casida M E, Huix-Rotllant M 2012 Rev. Phys. Chem. 63 287

    [28]

    Schipper P R T, Gritsenko O V, van Gisbergen S J A, Baerends E J 2000 J. Chem. Phys. 112 1344

    [29]

    Liu G, Niu P, Qing L G, Cheng H M 2010 J. Am. Chem. Soc. 132 11642

    [30]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [31]

    Zhang J, Zhang G, Chen X, Lin S, Mohlmann L, Dołega G, Lipner G, Antonietti M, Blechert S, Wang X 2012 Angew. Chem. Int. Ed. 51 3183

    [32]

    Huang Z F, Pan L, Zou J J, Zhang X, Wang L 2014 Nano Scale 6 14044

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R 2014 Chem. Sus. Chem. 7 690

    [3]

    Tan L L, Ong W J, Chai S P, Mohamed A R 2014 Chem. Commun. 50 6923

    [4]

    Chen Y, Wang B, Lin S, Zhang Y, Wang X 2014 J. Phys. Chem. C 118 29981

    [5]

    Ye C, Li J X, Li Z J, Li X B, Fan X B, Zhang L P, Chen B, Tung C H, Wu L Z 2015 ACS Catal. 5 6973

    [6]

    Zhang S L, Wang J X, Huang Y, Zeng M, Xu J 2015 J. Mater. Chem. A 3 10119

    [7]

    Umebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [8]

    Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G 2004 J. Am. Chem. Soc. 126 4782

    [9]

    Huang Z F, Song J, Pan L, Wang Z, Zhang X, Zou J J, Mi W, Zhang X, Wang L 2015 Nano Energy 12 646

    [10]

    Dong G, Zhao K, Zhang L 2012 Chem. Commun. 48 6178

    [11]

    Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 4646

    [12]

    Xu C, Han Q, Zhao Y, Wang L, Li Y, Qu L J 2015 J. Mater. Chem. A 3 1841

    [13]

    Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S 2016 Appl. Surf. Sci. 360 1016

    [14]

    Li Y, Hu Y, Zhao Y, Shi G Q, Deng L, Hou Y B, Qu L T 2011 Adv. Mater. 23 776

    [15]

    Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z 2012 Energy Environ. Sci. 5 6717

    [16]

    Zhang Z P, Zhang J, Chen N, Qu L T 2012 Energy Environ. Sci. 5 8869

    [17]

    Cao L, Sahu S, Anikumar P, Bunker C E, Xu J, Fernanodo K A S, Wang P, Guliants E A, Tackett K N, Sun Y P 2011 J. Am. Chem. Soc. 133 4754

    [18]

    Song Z P, Lin T R, Lin L H, Lin S, Fu F F, Wang X C, Guo L Q 2016 Angew. Chem. Int. Ed. 55 2773

    [19]

    Chan M H, Chen C W, Lee I J, Chan Y C, Tu D T, Hsiao M, Chen C H, Chen X Y, Liu R S 2016 Inorg. Chem. 55 10267

    [20]

    Fageria P, Uppala S, Nazir R, Gangopadhyay S, Chang C H, Basu M, Pande S 2016 Langmuir 32 10054

    [21]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76

    [22]

    Zhou J, Yang Y, Zhang C Y 2013 Chem. Commun. 49 8605

    [23]

    te Velde G, Bickelhaupt F M, Baerends E J, Fonseca G C, vanGisbergen S J A, Snijders J G, Ziegler T 2001 J. Comput. Chem. 22 931

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [26]

    Casida M E 2009 J. Mol. Struct:Theochem. 914 3

    [27]

    Casida M E, Huix-Rotllant M 2012 Rev. Phys. Chem. 63 287

    [28]

    Schipper P R T, Gritsenko O V, van Gisbergen S J A, Baerends E J 2000 J. Chem. Phys. 112 1344

    [29]

    Liu G, Niu P, Qing L G, Cheng H M 2010 J. Am. Chem. Soc. 132 11642

    [30]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [31]

    Zhang J, Zhang G, Chen X, Lin S, Mohlmann L, Dołega G, Lipner G, Antonietti M, Blechert S, Wang X 2012 Angew. Chem. Int. Ed. 51 3183

    [32]

    Huang Z F, Pan L, Zou J J, Zhang X, Wang L 2014 Nano Scale 6 14044

  • [1] Zhang Leng, Zhang Peng-Zhan, Liu Fei, Li Fang-Zheng, Luo Yi, Hou Ji-Wei, Wu Kong-Ping. Carrier mobility in doped Sb2Se3 based on deformation potential theory. Acta Physica Sinica, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [2] Lü Yong-Jie, Chen Yan, Ye Fang-Cheng, Cai Li-Bin, Dai Zi-Jie, Ren Yun-Peng. Influcence of external electric field and B/N doping on the band gap of stanene. Acta Physica Sinica, 2024, 73(8): 083101. doi: 10.7498/aps.73.20231935
    [3] Zhang Hong-Yan, Bao Li-Hong, Chao Luo-Meng, Zhao Feng-Qi, Liu Zi-Zhong. Optical absorption and thermionic emission mechanism of multi-functional La1–x Srx B6 hexaborides. Acta Physica Sinica, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [4] Pan Xiao-Jian, Bao Li-Hong, Ning Jun, Zhao Feng-Qi, Chao Luo-Meng, Liu Zi-Zhong. Synthesis and optical absorption properties of nanocrystalline rare earth hexaborides Nd1–xEuxB6 powders. Acta Physica Sinica, 2021, 70(3): 036101. doi: 10.7498/aps.70.20201288
    [5] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [6] Ren Chao, Li Xiu-Yan, Luo Quan-Wei, Liu Rui-Ping, Yang Zhi, Xu Li-Chun. Electronic structure and optical absorption properties of -AgVO3 with vacancy defects. Acta Physica Sinica, 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [7] Cheng Chao-Qun, Li Gang, Zhang Wen-Dong, Li Peng-Wei, Hu Jie, Sang Sheng-Bo, Deng Xiao. Electronic structures and optical properties of boron and phosphorus doped β-Si3N4. Acta Physica Sinica, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [8] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [9] Bao Li-Hong, Chao Lu-Meng, Wei Wei, O. Tegus. Synthesis and optical absorption properties of LaxCe1-xB6 submicron powders. Acta Physica Sinica, 2015, 64(9): 096104. doi: 10.7498/aps.64.096104
    [10] Yang Shuang-Bo. Effect of temperature and external magnetic field on the structure of electronic state of the Si-uniformlly-doped GaAs quantum well. Acta Physica Sinica, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [11] Wang Yan-Li, Su Ke-He, Yan Hong-Xia, Wang Xin. Investigation of C atom doped armchair (n, n) single walled BN nanotubes with density functional theory. Acta Physica Sinica, 2014, 63(4): 046101. doi: 10.7498/aps.63.046101
    [12] Liu Zhi-Min, Zhao Su-Ling, Xu Zheng, Gao Song, Yang Yi-Fan. Luminescence characteristics of PVK doped with red-emitting quantum dots. Acta Physica Sinica, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [13] Pu Nian-Nian, Li Hai-Rong, Xie Long-Zhen. Influence of NiOx hole-transporting layer on the light absorption of the polymer solar cells. Acta Physica Sinica, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [14] Yang Shuang-Bo. Effect of doping concentration and doping thickness on the structure of electronic state of the Si uniformly doped GaAs quantum well. Acta Physica Sinica, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [15] Xu Jin-Rong, Wang Ying, Zhu Xing-Feng, Li Ping, Zhang Li. First-principles study of N-doped and N-V co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [16] Xu Jia-Xiong, Yao Ruo-He. Investigation of the photovoltaic performance of n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4 solar cell. Acta Physica Sinica, 2012, 61(18): 187304. doi: 10.7498/aps.61.187304
    [17] Zhou Chuan-Cang, Liu Fa-Min, Ding Peng, Zhong Wen-Wu, Cai Lu-Gang, Zeng Le-Gui. Molten salt synthesis, V-doped and magnetic properties of columbite MnNb2O6. Acta Physica Sinica, 2011, 60(4): 048101. doi: 10.7498/aps.60.048101
    [18] Zhang Yun, Shao Xiao-Hong, Wang Zhi-Qiang. A first principle study on p-type doped 3C-SiC. Acta Physica Sinica, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [19] Xu Xin-Fa, Shao Xiao-Hong. Calculation of the electronic structure of Y-doped SrTiO3. Acta Physica Sinica, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [20] WANG YIN-HAI, MO JI-MEI, CAI WEI-LI, XU YAN-QI. NANO-Cu/Al2O3 ASSEMBLIES TEMPLATE SYNTHESIS AND OPTICAL ABSORPTION. Acta Physica Sinica, 2001, 50(9): 1751-1755. doi: 10.7498/aps.50.1751
  • supplement 187102-20171006suppl(1).pdf supplement
Metrics
  • Abstract views:  10191
  • PDF Downloads:  596
  • Cited By: 0
Publishing process
  • Received Date:  05 May 2017
  • Accepted Date:  18 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回
Baidu
map