Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics study on relaxation properties of monolayer MoS2 nanoribbons

Wang Wei-Dong Li Long-Long Yang Chen-Guang Li Ming-Lin

Citation:

Molecular dynamics study on relaxation properties of monolayer MoS2 nanoribbons

Wang Wei-Dong, Li Long-Long, Yang Chen-Guang, Li Ming-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to study the essential structural characteristics of monolayer MoS2 nanoribbons in natural state, and also the effects of the aspect ratio and the ambient temperature on the relaxation properties of the nanoribbons, the relaxation properties of monolayer MoS2 nanoribbons with different aspect ratios are simulated by molecular dynamics (MD) method based on REBO potential functions at different thermodynamic temperatures from 0.01 K to 1500 K. The energy curves and surface morphologies of monolayer MoS2 nanoribbon are obtained, and the dynamic equilibrium process of the monolayer MoS2 nanoribbons is also discussed in all the simulation process. The simulation results show that the monolayer MoS2 nanoribbons do not generate a fluctuation at the ideal temperature (0.01 K) for the reason that the kinetic energy of the monolayer MoS2 nanoribbons is almost zero and the vibration amplitude is small. However, a certain degree of fluctuations occurs at the edges and inside of the monolayer MoS2 nanoribbons at the room temperature or high temperature. The fluctuation height and the fluctuation degree also increase with increasing the ambient temperature and the aspect ratio of the MoS2 nanoribbon, even a high aspect ratio monolayer MoS2 nanoribbon exhibits a surface curved fluctuation, which is perpendicular to the surface of the MoS2 nanoribbons under high temperature condition. Finally, the influences of chirality on relaxation property under different temperature conditions are studied in this paper further, the results show that unlike the armchair structure, the zigzag monolayer MoS2 nanoribbons not only present a surface fluctuation, but also exhibit an obvious bending phenomenon along the width direction simultaneously. Like the armchair nanoribbons, the surface fluctuation height and the surface fluctuation degree of the zigzag nanoribbons also increase with increasing both the ambient temperature and the aspect ratio of the MoS2 nanoribbons. It is also observed that the armchair and zigzag monolayer MoS2 nanoribbons with a similar aspect ratio have a similar surface fluctuation degree at the same ambient temperature. Unlike the armchair nanoribbons, the bending phenomenon along the width direction of the zigzag nanoribbons is more significant, and the bending width and the bending degree increase with increasing the ambient temperature and the aspect ratio of the MoS2 nanoribbons. Although the bending degree of the zigzag nanoribbons becomes larger with the increase of temperature, the increasing rate of the bending degree will become smaller and smaller until the bending degree reaches a maximum value.
      Corresponding author: Wang Wei-Dong, wangwd@mail.xidian.edu.cn;liminglin@fzu.edu.cn ; Li Ming-Lin, wangwd@mail.xidian.edu.cn;liminglin@fzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51205302, 50903017).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S A, Firsov A A 2004 Science 306 666

    [2]

    Wang W D, Hao Y, Ji X, Yi C L, Niu X Y 2012 Acta Phys. Sin. 61 200207 (in Chinese) [王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇 2012 61 200207]

    [3]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Ji J 2014 Nano Lett. 14 5097

    [4]

    Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Shvets I V 2011 Science 331 568

    [5]

    Gong Y, Lin Z, Ye G, Shi G, Feng S, Lei Y, Lin Z 2015 ACS Nano 9 11658

    [6]

    Yuan M W 2013 Semicond. Technol. 38 212 (in Chinese) [袁明文 2013 半导体技术 38 212]

    [7]

    Lei T M, Wu S B, Zhang Y M, Liu J J, Guo H, Zhang Z Y 2013 Rare Metal Mat. Eng. 42 2477 (in Chinese) [雷天民, 吴胜宝, 张玉明, 刘佳佳, 郭辉, 张志勇 2013 稀有金属材料与工程 42 2477]

    [8]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307

    [9]

    Tai G, Zeng T, Yu J, Zhou J, You Y, Wang X, Guo W 2016 Nanoscale 8 2234

    [10]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 6805

    [11]

    Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S R, Tenne R 1997 Nature 387 791

    [12]

    Chen J, Kuriyama N, Yuan H, Takeshita H T, Sakai T 2001 J. Am. Chem. Soc. 123 11813

    [13]

    Dominko R, Arčon D, Mrzel A, Zorko A, Cevc P, Venturini P, Mihailovic D 2002 Adv. Mater. 14 1531

    [14]

    Bao W, Borys N J, Ko C, Suh J, Fan W, Thron A, Ashby P D 2015 Nat. Commun. 6 7993

    [15]

    Velusamy D B, Kim R H, Cha S, Huh J, Khazaeinezhad R, Kassani S H, Lee J 2015 Nat. Commun. 6 8063

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [17]

    Liu X, Zhang G., Pei Q X, Zhang Y W 2013 Appl. Phys. Lett. 103 133113

    [18]

    Wu M S, Xu B, Liu G, OuYang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [19]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 63 117101]

    [20]

    Mermin N D 1968 Phys. Rev. 176 250

    [21]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [22]

    Nelson D R, Peliti L 1987 J. Phys. 48 1085

    [23]

    Le Doussal P, Radzihovsky L 1992 Phys. Rev. Lett. 69 1209

    [24]

    Wang W, Yi C, Ji X, Niu X 2012 Nanosci. Nanotechnol. Lett. 4 1188

    [25]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [26]

    Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D 2007 Nano Lett. 7 1643

    [27]

    Chen Q, Cao H H, Hang H B 2004 J. Tianjin Univ. Technol. 20 101 (in Chinese) [陈强, 曹红红, 黄海波 2004 天津理工学院学报 20 101]

    [28]

    Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110

    [29]

    Liang T, Phillpot S R, Sinnott S B 2012 Phys. Rev. B 85 199903

    [30]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Mater. 14 783

    [31]

    Stewart J A, Spearot D E 2013 Model Simul. Mater. Sci. 21 045003

    [32]

    Dang K Q, Simpson J P, Spearot D E 2014 Scr. Mater. 76 41

    [33]

    Li A H 2010 J. Hunan Univ. Sci. Eng. 4 38 (in Chinese) [李爱华 2010 湖南科技学院学报 4 38]

    [34]

    Zhang Y 2014 M. S. Thesis (Changsha: Hunan Normal University) (in Chinese) [张勇 2014 硕士学位论文 (长沙: 湖南师范大学)]

    [35]

    Quereda J, Castellanos-Gomez A, Agraït N, Rubio-Bollinger G 2014 Appl. Phys. Lett. 105 053111

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S A, Firsov A A 2004 Science 306 666

    [2]

    Wang W D, Hao Y, Ji X, Yi C L, Niu X Y 2012 Acta Phys. Sin. 61 200207 (in Chinese) [王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇 2012 61 200207]

    [3]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Ji J 2014 Nano Lett. 14 5097

    [4]

    Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Shvets I V 2011 Science 331 568

    [5]

    Gong Y, Lin Z, Ye G, Shi G, Feng S, Lei Y, Lin Z 2015 ACS Nano 9 11658

    [6]

    Yuan M W 2013 Semicond. Technol. 38 212 (in Chinese) [袁明文 2013 半导体技术 38 212]

    [7]

    Lei T M, Wu S B, Zhang Y M, Liu J J, Guo H, Zhang Z Y 2013 Rare Metal Mat. Eng. 42 2477 (in Chinese) [雷天民, 吴胜宝, 张玉明, 刘佳佳, 郭辉, 张志勇 2013 稀有金属材料与工程 42 2477]

    [8]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307

    [9]

    Tai G, Zeng T, Yu J, Zhou J, You Y, Wang X, Guo W 2016 Nanoscale 8 2234

    [10]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 6805

    [11]

    Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S R, Tenne R 1997 Nature 387 791

    [12]

    Chen J, Kuriyama N, Yuan H, Takeshita H T, Sakai T 2001 J. Am. Chem. Soc. 123 11813

    [13]

    Dominko R, Arčon D, Mrzel A, Zorko A, Cevc P, Venturini P, Mihailovic D 2002 Adv. Mater. 14 1531

    [14]

    Bao W, Borys N J, Ko C, Suh J, Fan W, Thron A, Ashby P D 2015 Nat. Commun. 6 7993

    [15]

    Velusamy D B, Kim R H, Cha S, Huh J, Khazaeinezhad R, Kassani S H, Lee J 2015 Nat. Commun. 6 8063

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [17]

    Liu X, Zhang G., Pei Q X, Zhang Y W 2013 Appl. Phys. Lett. 103 133113

    [18]

    Wu M S, Xu B, Liu G, OuYang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [19]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 63 117101]

    [20]

    Mermin N D 1968 Phys. Rev. 176 250

    [21]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [22]

    Nelson D R, Peliti L 1987 J. Phys. 48 1085

    [23]

    Le Doussal P, Radzihovsky L 1992 Phys. Rev. Lett. 69 1209

    [24]

    Wang W, Yi C, Ji X, Niu X 2012 Nanosci. Nanotechnol. Lett. 4 1188

    [25]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [26]

    Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D 2007 Nano Lett. 7 1643

    [27]

    Chen Q, Cao H H, Hang H B 2004 J. Tianjin Univ. Technol. 20 101 (in Chinese) [陈强, 曹红红, 黄海波 2004 天津理工学院学报 20 101]

    [28]

    Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110

    [29]

    Liang T, Phillpot S R, Sinnott S B 2012 Phys. Rev. B 85 199903

    [30]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Mater. 14 783

    [31]

    Stewart J A, Spearot D E 2013 Model Simul. Mater. Sci. 21 045003

    [32]

    Dang K Q, Simpson J P, Spearot D E 2014 Scr. Mater. 76 41

    [33]

    Li A H 2010 J. Hunan Univ. Sci. Eng. 4 38 (in Chinese) [李爱华 2010 湖南科技学院学报 4 38]

    [34]

    Zhang Y 2014 M. S. Thesis (Changsha: Hunan Normal University) (in Chinese) [张勇 2014 硕士学位论文 (长沙: 湖南师范大学)]

    [35]

    Quereda J, Castellanos-Gomez A, Agraït N, Rubio-Bollinger G 2014 Appl. Phys. Lett. 105 053111

  • [1] Xia Zhao-Sheng, Liu Yu-Hang, Bao Zheng, Wang Li-Hua, Wu Bo, Wang Gang, Wang Hui, Ren Xin-Gang, Huang Zhi-Xiang. Strong circular dichroism chiral metasurfaces generated by quasi bound state in continuum domain. Acta Physica Sinica, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [2] Wu Peng, Tan Lun, Li Wei, Cao Li-Wei, Zhao Jun-Bo, Qu Yao, Li Ang. Preparation and photoelectric property of large scale monolayer MoS2. Acta Physica Sinica, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [3] Zou Dan-Dan, Tu Chen-Sheng, Hu Ping-Zi, Li Chun-Hua, Qian Mu-Yang. Mechanism of low-temperature helical streamer discharge driven by pulsed electromagnetic field. Acta Physica Sinica, 2023, 72(11): 115204. doi: 10.7498/aps.72.20230034
    [4] Liu Jie, Chen Wei, Yang Qiu-Lin, Mu Gen, Gao Hao, Shen Tao, Yang Si-Hua, Zhang Zhen-Hui. Research and development of polarized photoacoustic imaging technology. Acta Physica Sinica, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [5] Shi Shu-Shu, Xiao Shan, Xu Xiu-Lai. Chiral optical transport of quantum dots with different diamagnetic behaviors in a waveguide. Acta Physica Sinica, 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [6] Zhou Xiao-Xi, Hu Chuan-Deng, Lu Wei-Xin, Lai Yun, Hou Bo. Numerical design of frequency-split Weyl points in Weyl metamaterial. Acta Physica Sinica, 2020, 69(15): 154204. doi: 10.7498/aps.69.20200195
    [7] Yu Peng, Wang Bao-Qing, Wu Xiao-Hu, Wang Wen-Hao, Xu Hong-Xing, Wang Zhi-Ming. Circular dichroism of honeycomb-shaped elliptical hole absorber. Acta Physica Sinica, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [8] Shao Yu-Fei, Meng Fan-Shun, Li Jiu-Hui, Zhao Xing. Molecular dynamics simulations for tensile behaviors of mono-layer MoS2 with twin boundary. Acta Physica Sinica, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [9] Wei Zheng, Wang Qin-Qin, Guo Yu-Tuo, Li Jia-Wei, Shi Dong-Xia, Zhang Guang-Yu. Research progress of high-quality monolayer MoS2 films. Acta Physica Sinica, 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [10] Zou Dan-Dan, Cai Zhi-Chao, Wu Peng, Li Chun-Hua, Zeng Han, Zhang Hong-Li, Cui Chun-Mei. Plasma characteristics of helical streamers induced by pulsed discharges. Acta Physica Sinica, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [11] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [12] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [13] Dong Yan-Fang, He Da-Wei, Wang Yong-Sheng, Xu Hai-Teng, Gong Zhe. Synthesis of large size monolayer MoS2 with a simple chemical vapor deposition. Acta Physica Sinica, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [14] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [15] Shen Hong-Xia, Wu Guo-Zhen, Wang Pei-Jie. The chiral asymmetry revealed by the Raman differential bond polarizability of (2R, 3R)-(-)- 2, 3-butanediol. Acta Physica Sinica, 2013, 62(5): 053301. doi: 10.7498/aps.62.053301
    [16] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [17] Wang Wei-Dong, Hao Yue, Ji Xiang, Yi Cheng-Long, Niu Xiang-Yu. Relaxation properties of graphene nanoribbons at different ambient temperatures: a molecular dynamics study. Acta Physica Sinica, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [18] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [19] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] Zheng Yang-Dong, Li Jun-Qing, Li Chun-Fei. Second harmonic theory of two coupled oscillators in chiral molecular media. Acta Physica Sinica, 2003, 52(2): 372-376. doi: 10.7498/aps.52.372
Metrics
  • Abstract views:  7596
  • PDF Downloads:  487
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2016
  • Accepted Date:  05 June 2016
  • Published Online:  05 August 2016

/

返回文章
返回
Baidu
map