-
红外光谱能够精准反映分子振动的信息, 是表征材料成分和结构的重要手段. 但是纳米尺度材料与微米尺度红外光波长之间约三个数量级的尺寸失配导致两者之间相互作用十分微弱, 无法直接进行红外光谱表征. 因此如何获得微量纳米材料的红外光谱信息成为了近年来红外光谱领域面临的关键挑战. 等离激元能够将光场压缩实现局域光场增强, 从而增强光与物质的相互作用. 其中石墨烯等离激元因其具有高光场压缩、电学动态可调和低本征衰减等优点, 为表面增强红外光谱提供了重要的解决方案. 本文首先从不同材料体系出发介绍了红外等离激元, 在此基础上从石墨烯的基本性质出发总结石墨烯等离激元及其在表面增强红外光谱上的优势, 并重点介绍了石墨烯等离激元增强红外光谱的最新进展和应用, 包括单分子层生物化学探测、气体识别和折射率传感等. 最后对石墨烯等离激元增强红外光谱的下一步发展方向和应用前景进行了展望.Infrared spectroscopy can accurately reflect the information of molecular vibration, and it is an important technology to characterize the composition and structure of materials. However, since the interaction between nanomaterials and infrared light is very weak due to the significant size mismatch, it is challenging to obtain the spectral information of nanomaterials in the field of infrared spectroscopy. The plasmon is a collective electron oscillation on the surface of the material inducing by the incident light, and it has excellent light field confinement, which can significantly enhance the interaction between light and nanomaterials. Graphene plasmon has prominent properties, such as high light field confinement, dynamic adjustment, and low intrinsic attenuation. Therefore it is an important solution to enhance the infrared absorption of nanomaterials. This article systematically introduces the infrared plasmon materials system. Then it summarizes the characteristics of graphene plasmon and their advantages on surface enhanced infrared spectroscopy, and it emphasizes the recent important researches and applications of graphene plasmon enhanced infrared spectroscopy in the world, including single molecular layer biochemical detection, gas identification, refractive index sensing, etc. Further prospects for the development and potential applications of graphene plasmon enhanced infrared spectroscopy are also demonstrated.
-
Keywords:
- graphene /
- plasmon /
- surface enhanced spectroscopy /
- infrared spectroscopy
[1] Magazu S, Calabro E 2011 J. Phys. Chem. B 115 6818Google Scholar
[2] Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541Google Scholar
[3] Yang X, Sun Z, Low T, Hu H, Guo X, Garcia de Abajo F J, Avouris P, Dai Q 2018 Adv. Mater. 30 e1704896Google Scholar
[4] Zhang G, Huang S, Chaves A, Song C, Ozcelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071Google Scholar
[5] Li P, Dolado I, Alfaro-Mozaz F J, CasanovaF, Hueso L E, Liu S, Edgar J H, Nikitin A, Vélez S, Hillenbrand R 2018 Science 359 892Google Scholar
[6] Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F, Avouris P 2014 Nano Lett. 14 1573Google Scholar
[7] Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L, Koppens F 2017 Nat. Mater. 16 182Google Scholar
[8] Hartstein A, Kirtley J R, Tsang J C 1980 Phys. Rev. Lett. 45 201Google Scholar
[9] Yanik A A, Huang M, Kamohara O, Artar A, Geisbert T W, Connor J H, Altug H 2010 Nano Lett. 10 4962Google Scholar
[10] Rodrigo D, Tittl A, Limaj O, Abajo F J G, Pruneri V, Altug H 2017 Light Sci. Appl. 6 e16277Google Scholar
[11] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330Google Scholar
[12] Liao B, Guo X, Hu H, Liu N, Chen K, Yang X, Dai Q 2018 Chin. Phys. B 27 094101Google Scholar
[13] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749Google Scholar
[14] 杨晓霞, 孔祥天, 戴庆 2015 64 106801Google Scholar
Yang X X, Kong X T, Dai Q 2015 Acta Phys. Sin. 64 106801Google Scholar
[15] Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418Google Scholar
[16] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630Google Scholar
[17] Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Zurutuza Elorza A, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar
[18] Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar
[19] Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F 2013 Nat. Photon. 7 394Google Scholar
[20] Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J 2009 Adv. Mater. 21 2430Google Scholar
[21] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar
[22] Ye L, Sui K, Zhang Y, Liu Q H 2019 Nanoscale 11 3229Google Scholar
[23] Zhu A Y, Cubukcu E 2015 2D Mater. 2 032005Google Scholar
[24] Hu H, Yang X, Zhai F, Hu D, Liu R, Liu K, Sun Z, Dai Q 2016 Nat. Commun. 7 12334Google Scholar
[25] Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165Google Scholar
[26] Wu C, Liu N, Hu H, Guo X, Liao B, Liu J, Wang L, Chen C, Yang X, Dai Q 2019 Chin. Opt. Lett. 6 062401Google Scholar
[27] Hu H, Yang X, Guo X, Khaliji K, Biswas S R, Garcia de Abajo F J, Low T, Sun Z, Dai Q 2019 Nat. Commun. 10 1131Google Scholar
[28] Wenger T, Viola G, Kinaret J, Fogelström M, Tassin P 2017 2D Mater. 4 025103Google Scholar
[29] Guo X, Hu H, Zhu X, Yang X, Dai Q 2017 Nanoscale 9 14998Google Scholar
[30] Ni G X, McLeod A S, Sun Z, Wang L, Xiong L, Post K W, Sunku S S, Jiang B Y, Hone J, Dean C R, Fogler M M, Basov D N 2018 Nature 557 530Google Scholar
[31] Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435Google Scholar
[32] Liu J P, Zhai X, Wang L L, Li H J, Xie F, Xia S X, Shang X J, Luo X 2016 Opt. Express 24 5376Google Scholar
[33] Reale C 1974 J. Phys. F: Metal Phys. 4 2218Google Scholar
[34] Basov D N, Fogler M M, Garcia de Abajo F J 2016 Science 354 6309Google Scholar
[35] Soref R, Peale R E, Buchwald W 2008 Opt. Express 16 6507Google Scholar
[36] Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar
[37] Ueno K, Nakamura S, Shimotani H, Yuan H T, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2011 Nat. Nanotechnol. 6 408Google Scholar
[38] Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nat. Photon. 6 259Google Scholar
[39] Huynh K K, Tanabe Y, Urata T, Oguro H, Heguri S, Watanabe K, Tanigaki K 2014 Phys. Rev. B 90 144516Google Scholar
[40] Yuan J, Ma W, Zhang L, Lu Y, Zhao M, Guo H, Zhao J, Yu W, Zhang Y, Zhang K, Hoh H Y, Li X, Loh K P, Li S, Qiu C W, Bao Q 2017 ACS Photon. 4 3055Google Scholar
[41] Deshko Y, Krusin-Elbaum L, Menon V, Khanikaev A, Trevino J 2016 Opt. Express 24 7398Google Scholar
[42] Butch N P, Kirshenbaum K, Syers P, Sushkov A B, Jenkins G S, Drew H D, Paglione J 2010 Phys. Rev. B 81 241301Google Scholar
[43] Alcaraz Iranzo D, Nanot S, Dias E J C, Epstein I, Peng C, Efetov D K, Lundeberg M B, Parret R, Osmond J, Hong J Y, Kong J, Englund D R, Peres N M R, Koppens F H L 2018 Science 360 291Google Scholar
[44] Chiu K C, Falk A L, Ho P H, Farmer D B, Tulevski G, Lee Y H, Avouris P, Han S J 2017 Nano Lett. 17 5641Google Scholar
[45] Hartmann N, Piredda G, Berthelot J, Colas des Francs G, Bouhelier A, Hartschuh A 2012 Nano Lett. 12 177Google Scholar
[46] Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M, Dai H 2002 Nat. Mater. 1 241Google Scholar
[47] Shi Z, Hong X, Bechtel H A, Zeng B, Martin M C, Watanabe K, Taniguchi T, Shen Y R, Wang F 2015 Nat. Photon. 9 515Google Scholar
[48] Falk A L, Chiu K C, Farmer D B, Cao Q, Tersoff J, Lee Y H, Avouris P, Han S J 2017 Phys. Rev. Lett. 118 257401Google Scholar
[49] 王文慧, 张孬 2018 67 247302Google Scholar
Wang W, Zhang N 2018 Acta Phys. Sin. 67 247302Google Scholar
[50] Li Z, Yu X, Fu X, Hao Z, Li K 2008 Chin. Phys. Lett. 25 1776Google Scholar
[51] Kundu J, Le F, Nordlander P, Halas N J 2008 Chem. Phys. Lett. 452 115Google Scholar
[52] Brown L V, Yang X, Zhao K, Zheng B Y, Nordlander P, Halas N J 2015 Nano Lett. 15 1272Google Scholar
[53] Willets K A, van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar
[54] Schaadt D M, Feng B, Yu E T 2005 Appl. Phys. Lett. 86 063106Google Scholar
[55] Mulvaney P 1996 Langmuir 12 788Google Scholar
[56] El-Sayed K S, El-Sayed M A 2006 J. Phys. Chem. B 110 19220Google Scholar
[57] Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2012 Phys. Rev. B 85 081405Google Scholar
[58] Huang Y W, Lee H W H, Sokhoyan R, Pala R A, Thyagarajan K, Han S, Tsai D P, Atwater H A 2016 Nano Lett. 16 5319Google Scholar
[59] Baldassarre L, Sakat E, Frigerio J, Samarelli A, Gallacher K, Calandrini E, Isella G, Paul D J, Ortolani M, Biagioni P 2015 Nano Lett. 15 7225Google Scholar
[60] Abb M, Wang Y, Papasimakis N, de Groot C H, Muskens O L 2014 Nano Lett. 14 346Google Scholar
[61] Samarelli A, Frigerio J, Sakat E, Baldassarre L, Gallacher K, Finazzi M, Isella G, Ortolani M, Biagioni P, Paul D J 2016 Thin Solid Films 602 52Google Scholar
[62] Chen Y B 2009 Opt. Express 17 3130Google Scholar
[63] Zheng H, Jia J F 2019 Chin. Phys. B 28 067403Google Scholar
[64] 高艺璇, 张礼智, 张余洋, 杜世萱 2018 67 238101Google Scholar
Gao Y X, Zhang L Z, Zhang Y Y, Du S X 2018 Acta Phys. Sin. 67 238101Google Scholar
[65] Autore M, D'Apuzzo F, Di Gaspare A, Giliberti V, Limaj O, Roy P, Brahlek M, Koirala N, Oh S, García de Abajo F J, Lupi S 2015 Adv. Opt. Mater. 3 1257Google Scholar
[66] Qi J, Liu H, Xie X C 2014 Phys. Rev. B 89 155420Google Scholar
[67] Xu Y, Miotkowski I, Liu C, Tian J, Nam H, Alidoust N, Hu J, Shih C K, Hasan M Z, Chen Y P 2014 Nat. Phys. 10 956Google Scholar
[68] Chen H T, Yang H, Singh R, O’Hara J F, Azad A K, Trugman S A, Jia Q X, Taylor A J 2010 Phys. Rev. Lett. 105 247402Google Scholar
[69] Kurter C, Abrahams J, Shvets G, Anlage S M 2013 Phys. Rev. B 88 180510Google Scholar
[70] Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar
[71] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzalez P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H 2015 Nat. Mater. 14 421Google Scholar
[72] Liu R, Liao B, Guo X, Hu D, Hu H, Du L, Yu H, Zhang G, Yang X, Dai Q 2017 Nanoscale 9 208Google Scholar
[73] García de Abajo F J 2014 ACS Photon. 1 135Google Scholar
[74] Principi A, Vignale G, Carrega M, Polini M 2013 Phys. Rev. B 88 195405Google Scholar
[75] Bao Q, Loh K 2012 ACS Nano 6 3677Google Scholar
[76] Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar
[77] Fei Z, Andreev G O, Bao W, Zhang L, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Foger M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D NJ 2011 Nano Lett. 11 4701Google Scholar
[78] Martín-Moreno L, García de Abajo F J, Vidal F J 2015 Phys. Rev. Lett. 115 173601Google Scholar
[79] Morimoto T, Joung S K, Saito T, Futaba D N, Hata K, Okazaki T 2014 ACS Nano 8 9897Google Scholar
[80] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611Google Scholar
[81] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Modern Phys. 81 109Google Scholar
[82] Lee I H, Yoo D, Avouris P, Low T, Oh S H 2019 Nat. Nanotechnol. 14 313Google Scholar
[83] Guo Q, Li C, Deng B, Yuan S, Guinea F, Xia F 2017 ACS Photon. 4 2989Google Scholar
[84] Fang Z, Thong S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan P M, Nordlander P, Halas N, Abajo F 2013 ACS Nano 7 2388Google Scholar
[85] Nikitin A Y, Guinea F, Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119Google Scholar
[86] Gan C, Chu H, Li E 2012 Phys. Rev. B 12 125431
[87] Hwang E H, Das Sarma S 2009 Phys. Rev. B 80 205405Google Scholar
[88] Farmer D B, Rodrigo D, Low T, Avouris P 2015 Nano Lett. 15 2582Google Scholar
[89] Hu H, Liao B, Guo X, Hu D, Qiao X, Liu N, Liu R, Chen K, Bai B, Yang X, Dai Q 2017 Small 13 160302Google Scholar
[90] Hu H, Guo X, Hu D, Sun Z, Yang X, Dai Q 2018 Adv Sci 5 1800175Google Scholar
[91] Chen S, Autore M, Li J, Li P, Alonso-Gonzalez P, Yang Z, Martin-Moreno L, Hillenbrand R, Nikitin A Y 2017 ACS Photon. 4 3089Google Scholar
[92] Beutler H 1935 Zeitschrift für Physik 93 177Google Scholar
[93] Fano U 1961 Phys. Rev. 124 1866Google Scholar
[94] Guo X, Hu H, Liao B, Zhu X, Yang X, Dai Q 2018 Nanotechnology 29 184004Google Scholar
[95] Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H 2012 Sensors (Basel)
12 9635Google Scholar [96] Hodgkinson J, Tatam R P 2013 Measur. Sci. Technol. 24 012004Google Scholar
[97] Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P 2011 Nat. Mater. 10 631Google Scholar
[98] Farmer D B, Avouris P, Li Y, Heinz T F, Han S J 2016 ACS Photon. 3 553Google Scholar
[99] Liu F, Cubukcu E 2013 Phys. Rev. B 88 115439Google Scholar
[100] Slavík R, Homola J 2007 Sensors and Actuators B: Chemical 123 10Google Scholar
[101] Cheng H, Chen S, Yu P, Duan X, Xie B, Tian J 2013 Appl. Phys. Lett. 103 203112Google Scholar
[102] Pan M, Liang Z, Wang Y, Chen Y 2016 Sci. Rep. 6 29984Google Scholar
[103] Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491Google Scholar
-
图 1 典型的表面等离激元材料及其相应的等离激元响应 等离激元损耗取决于等离子体响应频段和载流子迁移率; TI, 拓扑绝缘体; 图中描述了金属(Au, Ag, Al, K, Na, Al; Pt, Pb, Pd和Ti)、 超导体(YBa2Cu3O7-d)、石墨烯、拓扑绝缘体(HgTe和Bi2Se3), 以及各种半导体(In2O3/SnO, ZnO, Ge, Si, III-V族, 和SiC)的载流子迁移率、等离子体响应频段; 图上方给出了石墨烯、半导体和金属天线的典型尺寸, 并绘制了这些材料的等离激元天线尺寸与辐射损耗之间的关系[3]
Fig. 1. Typical plasmonic materials and their corresponding plasmonic responses[3]. The plasmon damping largely depends on the plasma frequency and carrier mobility. TI, topological insulator. We present parameters for metals (Au, Ag, Al, K, Na; Au, Ag, Cu, Na, Al; Pt, Pb, Pd, and Ti), a superconductor (YBa2Cu3O7-d), graphene, two TIs (HgTe and Bi2Se3), and various semiconductors (In2O3/SnO, ZnO, Ge, Si, III–V’s, and SiC). The relationship between the size of a dipole plasmon antenna made of these materials and radiative damping is schematically plotted in the upper part. Typical antenna sizes of graphene, semiconductor, and metals are indicated.
图 3 石墨烯等离激元性质 (a)石墨烯等离激元高光场束缚, 石墨烯与金的近场强度束缚的百分比随纳米结构空间距离d变化的关系[25]; (b)石墨烯等离激元低本征损耗, 固定光子能量
$ \hbar\omega_{\rm ph}$ 下, 石墨烯本征狄拉克等离激元的寿命τp与电子浓度n的关系[74]; (c)石墨烯等离激元宽光谱响应, 不同石墨烯圆盘直径的等离激元响应[84]; (d) SiO2基底上不同条带宽度的石墨烯的消光光谱, 垂直虚线表示石墨烯光学声子频率[19]; (e), (f) CaF2基底栅压和条带宽度对石墨烯等离激元的调控[24]; (g)直接堆叠的1层、2层和3层石墨烯纳米条带对应的等离激元消光谱线[88]Fig. 3. Graphene plasmon: (a) High field confinement, percentage of space-integrated near-field intensity confined within a volume extending a distance d outside the nanoantenna[25]; (b) low damping, the intrinsic Dirac plasmon lifetime τp is plotted as a function of electron density n and for a fixed photon energy
$ \hbar\omega_{\rm ph}$ [74]; (c) broad spectral response, the graphene plasmon response by changing the diameter of graphene flakes[84]; (d)−(g) tunability; (d) extinction spectra of graphene with different strip widths of SiO2 substrate, vertical dashed lines indicate graphene optical phonon frequencies[19]; (e), (f) CaF2 substrates, gate voltage and strip width control of graphene plasmons[24]; (g) extinction spectrum of directly stacked 1 layer, 2 layers and 3 layers of graphene corresponding to the plasmon[88].图 4 分子红外指纹区增强探测 (a)石墨烯等离激元增强红外生物探测蛋白质[25]; (b)红外指纹区增强探测PEO分子振动模式[24]; (c)柔性云母基底石墨烯红外传感器[90]; (d), (e)声学石墨烯等离激元增强红外探测[91,82]; (f)悬空石墨烯红外窗片[89]
Fig. 4. (a) Graphene plasmon-enhanced infrared bio-sensing of protein[25]; (b) infrared fingerprint region enhanced detection of PEO vibration modes[24]; (c) flexible mica based graphene infrared sensor[90]; (d), (e) acoustic graphene plasmon enhanced infrared detection[91,82]; (f) suspended graphene to be infrared window[89].
图 5 气体识别 (a)金属等离激元检测氢气[97]; (b)石墨烯等离激元红外传感器探测丙酮和己烷气体[98]; (c)基于石墨烯等离激元的红外传感器对气体的无标记识别[27]
Fig. 5. (a) Metal plasmon detection of hydrogen[97]; (b) graphene plasmon infrared sensor for the detection of acetone and hexane vapor[98]; (c) label-free identification of gas by infrared sensors based on graphene plasmon[27].
图 7 折射率传感 (a)石墨烯等离激元对不同折射率覆盖物的反射率[28]; (b) Ag-石墨烯杂化结构折射率传感[102]; (c)具有H, T和HC高阶模式的石墨烯Fano超材料结构的透射光谱和Fano高阶模式对不同分析物(由折射率标记)的折射率传感[29]
Fig. 7. Refractive index sensing: (a) Reflectance from the structure for different values of the refractive index on top of the graphene[28]; (b) Ag-graphene hybrid structure for refractive index sensing[102]; (c) the transmission spectra of the Fano metamaterials with H, T, and HC order modes and simulated transmission spectra of the HC Fano resonance mode with different analyte (marked by refractive indices)[29].
表 1 比较红外等离激元材料金属、半导体、超导体、拓扑绝缘体、石墨烯及碳纳米管的载流子迁移率、可调性、局域能力以及传输距离; 等离激元波矢可以表示为q = q'+ iq'', q'为等离激元波矢实部, q''为等离激元波矢虚部; λp为等离激元波长,
$ {\lambda _{\rm{p}}} = 2{\text{π}} /q' $ ; 局域能力λIR/λp, λIR为自由空间光波长; 品质因子Q = q'/q''[30]Table 1. Comparing carrier mobility, adjustability, confinement ratio, and propagation length of SEIRA materials (metal, semiconductor, superconductor, topological insulator, graphene, and carbon nanotube). Plasmon wave vector q = q'+ iq'', the real part q' is used to define plasmon wavelength
$ {\lambda _{\rm{p}}} = 2{\text{π}} /q' $ , and the imagine part q'' is used to define propagation length Lp=1/(2q''). Confinement ratio = λIR/λp, λIR free space wavelength, and quality factorQ = q'/q''[30]红外表面等离激元材料 载流子迁移率cm2/(V·s) 可调性 局域能力λIR/λp 品质因子 金属(如Au, Ag)[31,32] ~100—102 [33] 电学不可调 < 5[34] < 36[30] 半导体(如Ge, ITO)[35,36] ~100—103[36] 电学可调 < 10[30] < 37[30] 超导体(如FeSe)[37,38] ~104[39]* 电学可调 — — 拓扑绝缘体(如Bi2Se3)[40,41] ~104[42] 电学可调 < 900[41,43] 3[43] 石墨烯[30,31] ~103—105[30] 电学可调 ~40—220[7,18,30,34,43] < 130*[30] 碳纳米管[44,45] ~103—104 [46] 电学可调 ~100—1000[47] < 26[47,48] 注: *表示低温. 表 2 不同波段的石墨烯等离激元性质比较
Table 2. Properties of graphene plasmon in different plasmon wavelength.
-
[1] Magazu S, Calabro E 2011 J. Phys. Chem. B 115 6818Google Scholar
[2] Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541Google Scholar
[3] Yang X, Sun Z, Low T, Hu H, Guo X, Garcia de Abajo F J, Avouris P, Dai Q 2018 Adv. Mater. 30 e1704896Google Scholar
[4] Zhang G, Huang S, Chaves A, Song C, Ozcelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071Google Scholar
[5] Li P, Dolado I, Alfaro-Mozaz F J, CasanovaF, Hueso L E, Liu S, Edgar J H, Nikitin A, Vélez S, Hillenbrand R 2018 Science 359 892Google Scholar
[6] Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F, Avouris P 2014 Nano Lett. 14 1573Google Scholar
[7] Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L, Koppens F 2017 Nat. Mater. 16 182Google Scholar
[8] Hartstein A, Kirtley J R, Tsang J C 1980 Phys. Rev. Lett. 45 201Google Scholar
[9] Yanik A A, Huang M, Kamohara O, Artar A, Geisbert T W, Connor J H, Altug H 2010 Nano Lett. 10 4962Google Scholar
[10] Rodrigo D, Tittl A, Limaj O, Abajo F J G, Pruneri V, Altug H 2017 Light Sci. Appl. 6 e16277Google Scholar
[11] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330Google Scholar
[12] Liao B, Guo X, Hu H, Liu N, Chen K, Yang X, Dai Q 2018 Chin. Phys. B 27 094101Google Scholar
[13] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749Google Scholar
[14] 杨晓霞, 孔祥天, 戴庆 2015 64 106801Google Scholar
Yang X X, Kong X T, Dai Q 2015 Acta Phys. Sin. 64 106801Google Scholar
[15] Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418Google Scholar
[16] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630Google Scholar
[17] Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Zurutuza Elorza A, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar
[18] Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar
[19] Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F 2013 Nat. Photon. 7 394Google Scholar
[20] Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J 2009 Adv. Mater. 21 2430Google Scholar
[21] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar
[22] Ye L, Sui K, Zhang Y, Liu Q H 2019 Nanoscale 11 3229Google Scholar
[23] Zhu A Y, Cubukcu E 2015 2D Mater. 2 032005Google Scholar
[24] Hu H, Yang X, Zhai F, Hu D, Liu R, Liu K, Sun Z, Dai Q 2016 Nat. Commun. 7 12334Google Scholar
[25] Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165Google Scholar
[26] Wu C, Liu N, Hu H, Guo X, Liao B, Liu J, Wang L, Chen C, Yang X, Dai Q 2019 Chin. Opt. Lett. 6 062401Google Scholar
[27] Hu H, Yang X, Guo X, Khaliji K, Biswas S R, Garcia de Abajo F J, Low T, Sun Z, Dai Q 2019 Nat. Commun. 10 1131Google Scholar
[28] Wenger T, Viola G, Kinaret J, Fogelström M, Tassin P 2017 2D Mater. 4 025103Google Scholar
[29] Guo X, Hu H, Zhu X, Yang X, Dai Q 2017 Nanoscale 9 14998Google Scholar
[30] Ni G X, McLeod A S, Sun Z, Wang L, Xiong L, Post K W, Sunku S S, Jiang B Y, Hone J, Dean C R, Fogler M M, Basov D N 2018 Nature 557 530Google Scholar
[31] Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435Google Scholar
[32] Liu J P, Zhai X, Wang L L, Li H J, Xie F, Xia S X, Shang X J, Luo X 2016 Opt. Express 24 5376Google Scholar
[33] Reale C 1974 J. Phys. F: Metal Phys. 4 2218Google Scholar
[34] Basov D N, Fogler M M, Garcia de Abajo F J 2016 Science 354 6309Google Scholar
[35] Soref R, Peale R E, Buchwald W 2008 Opt. Express 16 6507Google Scholar
[36] Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar
[37] Ueno K, Nakamura S, Shimotani H, Yuan H T, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2011 Nat. Nanotechnol. 6 408Google Scholar
[38] Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nat. Photon. 6 259Google Scholar
[39] Huynh K K, Tanabe Y, Urata T, Oguro H, Heguri S, Watanabe K, Tanigaki K 2014 Phys. Rev. B 90 144516Google Scholar
[40] Yuan J, Ma W, Zhang L, Lu Y, Zhao M, Guo H, Zhao J, Yu W, Zhang Y, Zhang K, Hoh H Y, Li X, Loh K P, Li S, Qiu C W, Bao Q 2017 ACS Photon. 4 3055Google Scholar
[41] Deshko Y, Krusin-Elbaum L, Menon V, Khanikaev A, Trevino J 2016 Opt. Express 24 7398Google Scholar
[42] Butch N P, Kirshenbaum K, Syers P, Sushkov A B, Jenkins G S, Drew H D, Paglione J 2010 Phys. Rev. B 81 241301Google Scholar
[43] Alcaraz Iranzo D, Nanot S, Dias E J C, Epstein I, Peng C, Efetov D K, Lundeberg M B, Parret R, Osmond J, Hong J Y, Kong J, Englund D R, Peres N M R, Koppens F H L 2018 Science 360 291Google Scholar
[44] Chiu K C, Falk A L, Ho P H, Farmer D B, Tulevski G, Lee Y H, Avouris P, Han S J 2017 Nano Lett. 17 5641Google Scholar
[45] Hartmann N, Piredda G, Berthelot J, Colas des Francs G, Bouhelier A, Hartschuh A 2012 Nano Lett. 12 177Google Scholar
[46] Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M, Dai H 2002 Nat. Mater. 1 241Google Scholar
[47] Shi Z, Hong X, Bechtel H A, Zeng B, Martin M C, Watanabe K, Taniguchi T, Shen Y R, Wang F 2015 Nat. Photon. 9 515Google Scholar
[48] Falk A L, Chiu K C, Farmer D B, Cao Q, Tersoff J, Lee Y H, Avouris P, Han S J 2017 Phys. Rev. Lett. 118 257401Google Scholar
[49] 王文慧, 张孬 2018 67 247302Google Scholar
Wang W, Zhang N 2018 Acta Phys. Sin. 67 247302Google Scholar
[50] Li Z, Yu X, Fu X, Hao Z, Li K 2008 Chin. Phys. Lett. 25 1776Google Scholar
[51] Kundu J, Le F, Nordlander P, Halas N J 2008 Chem. Phys. Lett. 452 115Google Scholar
[52] Brown L V, Yang X, Zhao K, Zheng B Y, Nordlander P, Halas N J 2015 Nano Lett. 15 1272Google Scholar
[53] Willets K A, van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar
[54] Schaadt D M, Feng B, Yu E T 2005 Appl. Phys. Lett. 86 063106Google Scholar
[55] Mulvaney P 1996 Langmuir 12 788Google Scholar
[56] El-Sayed K S, El-Sayed M A 2006 J. Phys. Chem. B 110 19220Google Scholar
[57] Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2012 Phys. Rev. B 85 081405Google Scholar
[58] Huang Y W, Lee H W H, Sokhoyan R, Pala R A, Thyagarajan K, Han S, Tsai D P, Atwater H A 2016 Nano Lett. 16 5319Google Scholar
[59] Baldassarre L, Sakat E, Frigerio J, Samarelli A, Gallacher K, Calandrini E, Isella G, Paul D J, Ortolani M, Biagioni P 2015 Nano Lett. 15 7225Google Scholar
[60] Abb M, Wang Y, Papasimakis N, de Groot C H, Muskens O L 2014 Nano Lett. 14 346Google Scholar
[61] Samarelli A, Frigerio J, Sakat E, Baldassarre L, Gallacher K, Finazzi M, Isella G, Ortolani M, Biagioni P, Paul D J 2016 Thin Solid Films 602 52Google Scholar
[62] Chen Y B 2009 Opt. Express 17 3130Google Scholar
[63] Zheng H, Jia J F 2019 Chin. Phys. B 28 067403Google Scholar
[64] 高艺璇, 张礼智, 张余洋, 杜世萱 2018 67 238101Google Scholar
Gao Y X, Zhang L Z, Zhang Y Y, Du S X 2018 Acta Phys. Sin. 67 238101Google Scholar
[65] Autore M, D'Apuzzo F, Di Gaspare A, Giliberti V, Limaj O, Roy P, Brahlek M, Koirala N, Oh S, García de Abajo F J, Lupi S 2015 Adv. Opt. Mater. 3 1257Google Scholar
[66] Qi J, Liu H, Xie X C 2014 Phys. Rev. B 89 155420Google Scholar
[67] Xu Y, Miotkowski I, Liu C, Tian J, Nam H, Alidoust N, Hu J, Shih C K, Hasan M Z, Chen Y P 2014 Nat. Phys. 10 956Google Scholar
[68] Chen H T, Yang H, Singh R, O’Hara J F, Azad A K, Trugman S A, Jia Q X, Taylor A J 2010 Phys. Rev. Lett. 105 247402Google Scholar
[69] Kurter C, Abrahams J, Shvets G, Anlage S M 2013 Phys. Rev. B 88 180510Google Scholar
[70] Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar
[71] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzalez P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H 2015 Nat. Mater. 14 421Google Scholar
[72] Liu R, Liao B, Guo X, Hu D, Hu H, Du L, Yu H, Zhang G, Yang X, Dai Q 2017 Nanoscale 9 208Google Scholar
[73] García de Abajo F J 2014 ACS Photon. 1 135Google Scholar
[74] Principi A, Vignale G, Carrega M, Polini M 2013 Phys. Rev. B 88 195405Google Scholar
[75] Bao Q, Loh K 2012 ACS Nano 6 3677Google Scholar
[76] Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar
[77] Fei Z, Andreev G O, Bao W, Zhang L, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Foger M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D NJ 2011 Nano Lett. 11 4701Google Scholar
[78] Martín-Moreno L, García de Abajo F J, Vidal F J 2015 Phys. Rev. Lett. 115 173601Google Scholar
[79] Morimoto T, Joung S K, Saito T, Futaba D N, Hata K, Okazaki T 2014 ACS Nano 8 9897Google Scholar
[80] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611Google Scholar
[81] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Modern Phys. 81 109Google Scholar
[82] Lee I H, Yoo D, Avouris P, Low T, Oh S H 2019 Nat. Nanotechnol. 14 313Google Scholar
[83] Guo Q, Li C, Deng B, Yuan S, Guinea F, Xia F 2017 ACS Photon. 4 2989Google Scholar
[84] Fang Z, Thong S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan P M, Nordlander P, Halas N, Abajo F 2013 ACS Nano 7 2388Google Scholar
[85] Nikitin A Y, Guinea F, Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119Google Scholar
[86] Gan C, Chu H, Li E 2012 Phys. Rev. B 12 125431
[87] Hwang E H, Das Sarma S 2009 Phys. Rev. B 80 205405Google Scholar
[88] Farmer D B, Rodrigo D, Low T, Avouris P 2015 Nano Lett. 15 2582Google Scholar
[89] Hu H, Liao B, Guo X, Hu D, Qiao X, Liu N, Liu R, Chen K, Bai B, Yang X, Dai Q 2017 Small 13 160302Google Scholar
[90] Hu H, Guo X, Hu D, Sun Z, Yang X, Dai Q 2018 Adv Sci 5 1800175Google Scholar
[91] Chen S, Autore M, Li J, Li P, Alonso-Gonzalez P, Yang Z, Martin-Moreno L, Hillenbrand R, Nikitin A Y 2017 ACS Photon. 4 3089Google Scholar
[92] Beutler H 1935 Zeitschrift für Physik 93 177Google Scholar
[93] Fano U 1961 Phys. Rev. 124 1866Google Scholar
[94] Guo X, Hu H, Liao B, Zhu X, Yang X, Dai Q 2018 Nanotechnology 29 184004Google Scholar
[95] Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H 2012 Sensors (Basel)
12 9635Google Scholar [96] Hodgkinson J, Tatam R P 2013 Measur. Sci. Technol. 24 012004Google Scholar
[97] Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P 2011 Nat. Mater. 10 631Google Scholar
[98] Farmer D B, Avouris P, Li Y, Heinz T F, Han S J 2016 ACS Photon. 3 553Google Scholar
[99] Liu F, Cubukcu E 2013 Phys. Rev. B 88 115439Google Scholar
[100] Slavík R, Homola J 2007 Sensors and Actuators B: Chemical 123 10Google Scholar
[101] Cheng H, Chen S, Yu P, Duan X, Xie B, Tian J 2013 Appl. Phys. Lett. 103 203112Google Scholar
[102] Pan M, Liang Z, Wang Y, Chen Y 2016 Sci. Rep. 6 29984Google Scholar
[103] Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491Google Scholar
计量
- 文章访问数: 16130
- PDF下载量: 501
- 被引次数: 0