-
Thermoelectric (TE) material is a kind of energy conversion material, which can be used for power generation and refrigeration. Until now, traditional inorganic TE materials have shown high dimensionless thermoelectric figure of merit (ZT) values. But their expensive raw material and high processing cost, heavy metal pollution and poor processability limit their broad applications. Poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers possess some excellent features, such as high electrical conductivity, low thermal conductivity, flexibility, low cost, abundance, and light weight. More and more attention has recently been paid to the TE properties of PEDOT polymers and PEDOT polymer based nanocomposites. Ascorbic acid (VC) is used as a reducing agent to tune the PEDOT-Tos-PPP film. The PEDOT-Tos-PPP films via VPP technique are treated with VC solutions with different concentrations. The TE properties of the films before and after being treated with VC at different concentrations are measured. The effect of concentration of VC aqueous solution on the thermoelectric properties and stabilities of the film are studied. The results indicate that the power factor of the film after being treated with 20% VC is 55.6 μW·m–1·K–2, which is 1.7 times as high as that of the pristine PEDOT-Tos-PPP film (34.4 μW·m–1·K–2). The maximum ZT value at room temperature is 0.032. After the VC treatment, the conductivity and Seebeck coefficient of the PEDOT film show unstable characteristics in the air, which is mainly due to the further oxidation of the neutral state on the PEDOT film surface in the air.
-
Keywords:
- poly (3, 4-ethylenedioxythiophene) /
- film /
- post-treatment /
- thermoelectric property
[1] Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M, Crispin X 2011 Nat. Mater. 10 429Google Scholar
[2] Kim G, Shao L, Zhang K, Pipe K P 2013 Nat. Mater. 12 719Google Scholar
[3] 陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar
Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar
[4] 许易, 许小言, 张薇, 欧阳滔, 唐超 2019 68 247202Google Scholar
Xu Y, Xu X Y, Zhang W, Ouyang T, Tang C 2019 Acta Phys. Sin. 68 247202Google Scholar
[5] 李小亚, 陈炎, 郝峰, 包晔峰, 陈立东 2017 中国材料进展 36 270
Li X Y, Chen Y, Hao F, Bao Y F, Chen L D 2017 Materials China 36 270
[6] Wang Y, Yang L, Shi X L, Shi X, Chen L, Dargusch M S, Zou J, Chen Z G 2019 Adv. Mater. 31 1807916Google Scholar
[7] Culebras M, Gómez C M, Cantarero A 2014 J. Mater. Chem. A 2 10109Google Scholar
[8] Lee S H, Park H, Kim S, Son W, Cheong I W, Kim J H 2014 J. Mater. Chem. A 2 7288Google Scholar
[9] Park H, Lee S H, Kim F S, Choi H H, Cheong I W, Kim J H 2014 J. Mater. Chem. A 2 6532Google Scholar
[10] Bubnova O, Berggren M, Crispin X 2012 J. Am. Chem. Soc. 134 16456Google Scholar
[11] Park T, Park C, Kim B, Shin H, Kim E 2013 Energy Environ. Sci. 6 788Google Scholar
[12] Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X 2010 Chem. Mater. 22 2213Google Scholar
[13] Bubnova O, Khan Z U, Wang H, Braun S, Evans D R, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin J B, Geerts Y H, Desbief S, Breiby D W, Andreasen J W, Lazzaroni R, Chen W M M, Zozoulenko I, Fahlman M, Murphy P J, Berggren M, Crispin X 2014 Nat. Mater. 13 190Google Scholar
[14] Mott N F, Davis E A 1979
[15] Jiang F X, Xu J K, Lu B Y, Xie Y, Huang R J, Li L F 2008 Chin. Phys. Lett. 25 2202Google Scholar
[16] Scholdt M, Do H, Lang J, Gall A, Colsmann A, Lemmer U, Koenig J D, Winkler M, Boettner H 2010 J. Electron. Mater. 39 1589Google Scholar
[17] Kim D, Kim Y, Choi K, Grunlan J C, Yu C 2010 ACS Nano 4 513Google Scholar
[18] Yu C, Choi K, Yin L, Grunlan J C 2011 ACS Nano 5 7885Google Scholar
[19] Xia Y, Sun K, Ouyang J 2012 Adv. Mater. 24 2436Google Scholar
[20] Im S G, Gleason K K 2007 Macromolecules 40 6552Google Scholar
[21] Bubnova O, Crispin X 2012 Energy Environ. Sci. 5 9345Google Scholar
[22] Łapkowski M, Proń A 2000 Synth. Met. 110 79Google Scholar
[23] Crispin X, Marciniak S, Osikowicz W, Zotti G, Gon A W D v d, Louwet F, Fahlman M, Groenendaal L, Schryver F D, Salaneck W R 2003 J. Polym. Sci., Part B: Polym. Phys. 41 2561Google Scholar
[24] Lindell L, Burquel A, Jakobsson F L, Lemaur V, Berggren M, Lazzaroni R, Cornil J, Salaneck W R, Crispin X 2006 Chem. Mater. 18 4246Google Scholar
[25] Spanninga S A, Martin D C, Chen Z 2009 J. Phys. Chem. C 113 5585
[26] Wang T, Qi Y, Xu J, Hu X, Chen P 2005 Appl. Surf. Sci. 250 188Google Scholar
[27] Xing K, Fahlman M, Chen X, Inganäs O, Salaneck W 1997 Synth. Met. 89 161Google Scholar
[28] Garreau S, Louarn G, Buisson J P, Froyer G, Lefrant S 1999 Macromolecules 32 6807Google Scholar
[29] Silva R A, Goulart Silva G, Pimenta M A 2001 J. Raman Spectrosc. 32 369Google Scholar
-
图 5 VPP法制备的PEDOT-Tos-PPP薄膜、经过VC后处理的新鲜样品及后处理样品在空气中放置一段时间后的XPS分析 (a) Survey谱; (b) S2p分谱; (c) C1s分谱; (d) O1s分谱
Figure 5. XPS of PEDOT-Tos-PPP film prepared by the VPP method, fresh samples after VC post-treatment, and post-treated samples in the air for a period of time: (a) Survey spectrum; (b) S2p spectrum; (c) C1s spectrum; (d) O1s spectrum.
图 3 未处理和经过20% VC水溶液处理后放置空气中2 d后(a)电导率、(b) Seebeck系数和(c)功率因子随温度的变化, 图(a)中的插图为ln(σ)-T–1/3
Figure 3. The relationship between (a) conductivity, (b) Seebeck coefficient, and (c) power factor with temperature in untreated and 20% VC aqueous solution in air for 2 d. The inset in Fig. (a) is the relations between ln(σ) and T–1/3.
表 1 不同方法改善PEDOT热电性能的对比
Table 1. Comparison of different methods to improve PEDOT thermoelectric performance.
-
[1] Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M, Crispin X 2011 Nat. Mater. 10 429Google Scholar
[2] Kim G, Shao L, Zhang K, Pipe K P 2013 Nat. Mater. 12 719Google Scholar
[3] 陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar
Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar
[4] 许易, 许小言, 张薇, 欧阳滔, 唐超 2019 68 247202Google Scholar
Xu Y, Xu X Y, Zhang W, Ouyang T, Tang C 2019 Acta Phys. Sin. 68 247202Google Scholar
[5] 李小亚, 陈炎, 郝峰, 包晔峰, 陈立东 2017 中国材料进展 36 270
Li X Y, Chen Y, Hao F, Bao Y F, Chen L D 2017 Materials China 36 270
[6] Wang Y, Yang L, Shi X L, Shi X, Chen L, Dargusch M S, Zou J, Chen Z G 2019 Adv. Mater. 31 1807916Google Scholar
[7] Culebras M, Gómez C M, Cantarero A 2014 J. Mater. Chem. A 2 10109Google Scholar
[8] Lee S H, Park H, Kim S, Son W, Cheong I W, Kim J H 2014 J. Mater. Chem. A 2 7288Google Scholar
[9] Park H, Lee S H, Kim F S, Choi H H, Cheong I W, Kim J H 2014 J. Mater. Chem. A 2 6532Google Scholar
[10] Bubnova O, Berggren M, Crispin X 2012 J. Am. Chem. Soc. 134 16456Google Scholar
[11] Park T, Park C, Kim B, Shin H, Kim E 2013 Energy Environ. Sci. 6 788Google Scholar
[12] Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X 2010 Chem. Mater. 22 2213Google Scholar
[13] Bubnova O, Khan Z U, Wang H, Braun S, Evans D R, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin J B, Geerts Y H, Desbief S, Breiby D W, Andreasen J W, Lazzaroni R, Chen W M M, Zozoulenko I, Fahlman M, Murphy P J, Berggren M, Crispin X 2014 Nat. Mater. 13 190Google Scholar
[14] Mott N F, Davis E A 1979
[15] Jiang F X, Xu J K, Lu B Y, Xie Y, Huang R J, Li L F 2008 Chin. Phys. Lett. 25 2202Google Scholar
[16] Scholdt M, Do H, Lang J, Gall A, Colsmann A, Lemmer U, Koenig J D, Winkler M, Boettner H 2010 J. Electron. Mater. 39 1589Google Scholar
[17] Kim D, Kim Y, Choi K, Grunlan J C, Yu C 2010 ACS Nano 4 513Google Scholar
[18] Yu C, Choi K, Yin L, Grunlan J C 2011 ACS Nano 5 7885Google Scholar
[19] Xia Y, Sun K, Ouyang J 2012 Adv. Mater. 24 2436Google Scholar
[20] Im S G, Gleason K K 2007 Macromolecules 40 6552Google Scholar
[21] Bubnova O, Crispin X 2012 Energy Environ. Sci. 5 9345Google Scholar
[22] Łapkowski M, Proń A 2000 Synth. Met. 110 79Google Scholar
[23] Crispin X, Marciniak S, Osikowicz W, Zotti G, Gon A W D v d, Louwet F, Fahlman M, Groenendaal L, Schryver F D, Salaneck W R 2003 J. Polym. Sci., Part B: Polym. Phys. 41 2561Google Scholar
[24] Lindell L, Burquel A, Jakobsson F L, Lemaur V, Berggren M, Lazzaroni R, Cornil J, Salaneck W R, Crispin X 2006 Chem. Mater. 18 4246Google Scholar
[25] Spanninga S A, Martin D C, Chen Z 2009 J. Phys. Chem. C 113 5585
[26] Wang T, Qi Y, Xu J, Hu X, Chen P 2005 Appl. Surf. Sci. 250 188Google Scholar
[27] Xing K, Fahlman M, Chen X, Inganäs O, Salaneck W 1997 Synth. Met. 89 161Google Scholar
[28] Garreau S, Louarn G, Buisson J P, Froyer G, Lefrant S 1999 Macromolecules 32 6807Google Scholar
[29] Silva R A, Goulart Silva G, Pimenta M A 2001 J. Raman Spectrosc. 32 369Google Scholar
Catalog
Metrics
- Abstract views: 8093
- PDF Downloads: 81
- Cited By: 0