-
Thermoelectric materials of the skutterudites In0.3Co4Sb12-xSex(x=0—0.3) were prepared by melt-annealing and spark plasma sintering. The existence forms of the element In were investigated, and the effect of doping Se in In filled-skutterudites on the structure and thermoelectric properties were also studied systematically. The element In could be filled into the hole structure of skutterudite, and the excessive In exists as InSb in the boundary of grains. After the substitution of Se for Sb, the lattice parameters decrease, and the filling fraction limit of In decreases. All the compounds of In0.3Co4Sb12-xSex(x=0—0.3) show n-type conduction. With the Se doping amount increasing, the carrier concentration and electrical conductivity decrease, and the Seebeck coefficient increases, and the power factor decreases slightly. Since the introduction of Se substitution brings about quality fluctuation and lattice distortion in structure, moderate amount of Se substitution can lower the thermal conductivity largely. The maximum ZT values of both In0.3Co4Sb12 and In0.3Co4Sb11.95Se0.05 samples reach above 1.0.
-
Keywords:
- doping /
- filled-skutterudite /
- thermoelectric properties
[1] Yang J H, Thierry C 2006 MRS Bull. 31 224
[2] Cadoff J B, Miller E 1961 Thermoelectric Materials and Device (New York: Reinhold Pub. Corp.) p84—92
[3] Sales B C, Mandrus D, Williams R K 1996 Science 272 1325
[4] Nolas G S, Cohn J L, Slack G A 1998 Phys. Rev. B 58 164
[5] Bai S Q, Pei Y Z, Chen L D, Zhang W Q, Zhao X Y, Yang J 2009 Acta Mater. 57 3135
[6] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2000 Acta Phys. Sin. 49 2460 (in Chinese) [唐新峰、陈立东、後藤孝、平井敏雄、袁润章 2000 49 2460]
[7] Li H, Tang X F, Liu T X, Song C, Zhang Q J 2005 Acta Phys. Sin. 54 5481 (in Chinese) [李 涵、唐新峰、刘桃香、宋 晨、张清杰 2005 54 5481]
[8] Lamberton G A, Bhattacharya J S, Littleton R T, Kaeser M A, Yang J, Nolas G S 2002 Appl. Phys. Lett. 80 598
[9] Li H, Tang X F, Su X L, Zhang Q J 2008 Appl. Phys. Lett. 92 202114
[10] Puyet M, Lenoir B, Dauscher A, Dehmas M, Stiewe C, Muller E 2004 J. Appl. Phys. 95 4852
[11] Zhao X Y, Shi X, Chen L D, Zhang W Q, Zhang W B, Pei Y Z 2006 J. Appl. Phys. 99 053711
[12] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2002 Acta Phys. Sin. 51 2823(in Chinese) [唐新峰、陈立东、後藤孝、平 井敏雄、袁润章 2002 51 2823] 〖13] Pei Y Z, Chen L D, Zhang W Q, Shi X, Bai S Q, Zhao X Y, Mei Z G, Li X Y 2006 Appl. Phys. Lett. 89 221107
[13] Pei Y Z, Yang J, Chen L D, Zhang W Q, Salvador J R, Yang J H 2009 Appl. Phys. Lett. 95 042101
[14] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2000 Acta Phys. Sin. 49 1120 (in Chinese) [唐新峰、陈立东、後藤孝、平井敏雄、袁润章 2000 49 1120]
[15] Berardan D, Alleno E, Godart C, Puyer M, Lenoir B, Lackner R, Bauer E, Girard L, Ravot D 2005 J. Appl. Phys. 98 033710
[16] Jung J Y, Chul S C, Kim I H 2008 Mater. Chem. Phys. 108 431
[17] Liu W S, Zhang B P, Zhao L D, Li J F 2008 Chem. Mater. 20 7526
[18] Lamberton G A, Tedstrom R H, Tritt T M, Nolas G S 2005 J. Appl. Phys. 97 113715
[19] He T, Chen J Z, Rosenfeld H D, Subramanian M A 2006 Chem. Mater. 18 759
[20] Li H, Tang X F, Zhang Q J, Uher C 2009 Appl. Phys. Lett. 94 102114
[21] Sharp J W, Jones E C, Williams R K, Martin P M, Sales B C 1995 J. Appl. Phys. 78 1013
-
[1] Yang J H, Thierry C 2006 MRS Bull. 31 224
[2] Cadoff J B, Miller E 1961 Thermoelectric Materials and Device (New York: Reinhold Pub. Corp.) p84—92
[3] Sales B C, Mandrus D, Williams R K 1996 Science 272 1325
[4] Nolas G S, Cohn J L, Slack G A 1998 Phys. Rev. B 58 164
[5] Bai S Q, Pei Y Z, Chen L D, Zhang W Q, Zhao X Y, Yang J 2009 Acta Mater. 57 3135
[6] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2000 Acta Phys. Sin. 49 2460 (in Chinese) [唐新峰、陈立东、後藤孝、平井敏雄、袁润章 2000 49 2460]
[7] Li H, Tang X F, Liu T X, Song C, Zhang Q J 2005 Acta Phys. Sin. 54 5481 (in Chinese) [李 涵、唐新峰、刘桃香、宋 晨、张清杰 2005 54 5481]
[8] Lamberton G A, Bhattacharya J S, Littleton R T, Kaeser M A, Yang J, Nolas G S 2002 Appl. Phys. Lett. 80 598
[9] Li H, Tang X F, Su X L, Zhang Q J 2008 Appl. Phys. Lett. 92 202114
[10] Puyet M, Lenoir B, Dauscher A, Dehmas M, Stiewe C, Muller E 2004 J. Appl. Phys. 95 4852
[11] Zhao X Y, Shi X, Chen L D, Zhang W Q, Zhang W B, Pei Y Z 2006 J. Appl. Phys. 99 053711
[12] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2002 Acta Phys. Sin. 51 2823(in Chinese) [唐新峰、陈立东、後藤孝、平 井敏雄、袁润章 2002 51 2823] 〖13] Pei Y Z, Chen L D, Zhang W Q, Shi X, Bai S Q, Zhao X Y, Mei Z G, Li X Y 2006 Appl. Phys. Lett. 89 221107
[13] Pei Y Z, Yang J, Chen L D, Zhang W Q, Salvador J R, Yang J H 2009 Appl. Phys. Lett. 95 042101
[14] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2000 Acta Phys. Sin. 49 1120 (in Chinese) [唐新峰、陈立东、後藤孝、平井敏雄、袁润章 2000 49 1120]
[15] Berardan D, Alleno E, Godart C, Puyer M, Lenoir B, Lackner R, Bauer E, Girard L, Ravot D 2005 J. Appl. Phys. 98 033710
[16] Jung J Y, Chul S C, Kim I H 2008 Mater. Chem. Phys. 108 431
[17] Liu W S, Zhang B P, Zhao L D, Li J F 2008 Chem. Mater. 20 7526
[18] Lamberton G A, Tedstrom R H, Tritt T M, Nolas G S 2005 J. Appl. Phys. 97 113715
[19] He T, Chen J Z, Rosenfeld H D, Subramanian M A 2006 Chem. Mater. 18 759
[20] Li H, Tang X F, Zhang Q J, Uher C 2009 Appl. Phys. Lett. 94 102114
[21] Sharp J W, Jones E C, Williams R K, Martin P M, Sales B C 1995 J. Appl. Phys. 78 1013
Catalog
Metrics
- Abstract views: 8809
- PDF Downloads: 1001
- Cited By: 0