Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on neutron single event effects of commercial SRAMs based on CSNS

Wang Xun Zhang Feng-Qi Chen Wei Guo Xiao-Qiang Ding Li-Li Luo Yin-Hong

Citation:

Experimental study on neutron single event effects of commercial SRAMs based on CSNS

Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong
PDF
HTML
Get Citation
  • The experiment of neutron single event effect was carried out at China Spallation Neutron Source (CSNS) back-n on 13 kinds of commercial SRAM. The single event upset (SEU) cross section of each device was obtained, and multiple cell upsets (MCU) were extracted from the SEUs using a statistical method without layout information. The influences of the test pattern, feature size and device layout on the SEU cross section and MCU were studied. The results show that the test pattern has little influence on the SEU cross section of the devices, but has a great influence on the MCU ratio of some devices. The feature size has influence both on the SEU cross section and the MCU ratio of the devices. The influence on SEU cross section is not definite. The influence on the MCU ratio is definite. Both the ratio and the maximum size of the MCUs increase with the decrease of the feature size. The difference of layout has great influence both on the SEU cross section and the MCU ratio of the device. In addition, compared with the results of plateau irradiation, the ratio of MCU in CSNS back-n is less than that of plateau irradiation. There are two reasons for this difference. One is that the energy spectrum of CSNS back-n is softer than that of the atmospheric neutron. The other is the neutron beam at CSNS back-n is perpendicular to the device under test. Therefore, evaluating the atmospheric neutron SEE using CSNS back-n line may underestimate the MCU ratio of the device under test. The experimental data, analytical methods and results obtained in this paper are valuable for the researchers to carry out the atmospheric neutron SEE test and the evaluation of devices on atmospheric neutron SEE.
      Corresponding author: Wang Xun, wangxun@nint.ac.cn
    [1]

    Wrobel F, Palau J M, Calvet M C, Bersillon O, Duarte H 2000 IEEE Trans. Nucl. Sci. 47 2580Google Scholar

    [2]

    Hubert G, Bezerra F, Nicot J M, Artola L, Cheminet A, Valdivia J N, Mouret J M, Meyer J R, Cocquerez P 2014 IEEE Trans. Nucl. Sci. 61 1703Google Scholar

    [3]

    Autran J L, Munteanu D 2015 Microelectron. Reliab. 55 2147Google Scholar

    [4]

    Juan A C, Guillaume H, Francisco J F, Francesca V, Maud B, Hortensia M, Helmut P, Raoul V 2017 IEEE Trans. Nucl. Sci. 64 2188

    [5]

    Azambuja J R, Nazar G, Rech P, Carro L, Kastensmidt F L, Fairbanks T, Quinn H 2013 IEEE Trans. Nucl. Sci. 60 4243Google Scholar

    [6]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 2742Google Scholar

    [7]

    Quinn H, Graham P, Manuzzato A, Fairbanks T, Dallmann N, DesGeorges R 2010 IEEE Trans. Nucl. Sci. 57 3547

    [8]

    Abe S, Watanabe Y 2014 IEEE Trans. Nucl. Sci. 61 3519Google Scholar

    [9]

    Granlund T, Granbom B, Olsson N 2003 IEEE Trans. Nucl. Sci. 50 2065Google Scholar

    [10]

    Chen W, Guo X, Wang C, Zhang F, Qi C, Wang X, Jin X, Wei Y, Yang S, Song Z 2019 IEEE Trans. Nucl. Sci. 66 856Google Scholar

    [11]

    Lee U T, Monga S, Choi U, Lee J, Pae S 2018 IEEE Trans. Nucl. Sci. 65 1255Google Scholar

    [12]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [13]

    Dyer C S, Clucas S N, Sanderson C, Frydland A D, Green R T 2004 IEEE Trans. Nucl. Sci. 51 2817Google Scholar

    [14]

    Weulersse C, Guibbaud N, Beltrando A L, Galinat J, Beltrando C, Miller F, Trochet P, Alexandrescu D 2017 IEEE Trans. Nucl. Sci. 64 2268

    [15]

    郭晓强, 郭红霞, 王桂珍, 林东生, 陈伟, 白小燕, 杨善潮, 刘岩 2009 强激光与粒子束 21 1547

    Guo X Q, Guo H X, Wang G Z, Ling D S, Chen W, Bai X Y, Yang S C, Liu Y 2009 High Power Laser Particle Beams 21 1547

    [16]

    Yang W, Li Y, Li Y, Hu Z, Xie F, He C, Wang S, Zhou B, He H, Khan W, Liang T 2019 Microelectron. Reliab. 99 119Google Scholar

    [17]

    胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 68 238502Google Scholar

    Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar

    [18]

    JEDEC, Measurement and Reporting of Alpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices: JESD89 A, JEDEC STANDARD, vol.89, JEDEC Solid State Technology Association

    [19]

    Ni W, Jing H, Zhang L, Ou L 2018 Radiat. Phys. Chem. 152 43Google Scholar

    [20]

    鲍杰, 陈永浩, 张显鹏, 等 2019 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [21]

    Ahlbin, J R, Atkinson N M, Gadlage M J, Gaspard N J, Bhuva B L, Loveless T D, Zhang E X, Chen L, Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2585Google Scholar

    [22]

    Lilja K, Bounasser M, Wen S J, et al. 2013 IEEE Trans. Nucl. Sci. 60 2782Google Scholar

    [23]

    He Y, Chen S, Chen J, Chi Y, Liang B, Liu B, Qin J, Du Y, Huang P 2012 IEEE Trans. Nucl. Sci. 59 2772Google Scholar

    [24]

    Atkinson N M, Witulski A F, Holman W T, et al. 2011 IEEE Trans. Nucl. Sci. 58 885Google Scholar

    [25]

    Wang X, Ding L, Luo Y, Chen W, Zhang F, Guo X 2020 IEEE Trans. Nucl. Sci. 67 1443Google Scholar

    [26]

    王勋, 罗尹虹, 丁李利, 张凤祁, 陈伟, 郭晓强, 王坦 2020 原子能科学技术Google Scholar

    Wang X, Luo Y H, Ding L L, Zhang F Q, Chen W, Guo X Q, Wang T 2020 Atom. Energy Sci. Technol.Google Scholar

    [27]

    Radaelli D, Puchner H, Wong S, Daniel S 2005 IEEE Trans. Nucl. Sci. 52 2433Google Scholar

    [28]

    Yasuo Y, Hironaru Y, Eishi I, Hideaki K, Masatoshi S, Takashi A, Shigehisa Y 2007 IEEE Trans. Nucl. Sci. 54 1030Google Scholar

    [29]

    Zhang Z G, Liu J, Hou M D, et al. 2013 Chin. Phys. B 22 086102Google Scholar

    [30]

    Ikeda N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200Google Scholar

  • 图 1  CSNS反角白光中子源实验终端布局[19]

    Figure 1.  Layout of back-n at CSNS[19].

    图 2  CSNS反角白光中子源终端2与羊八井大气中子微分能谱对比

    Figure 2.  Comparison between the differential neutron energy spectra of CSNS back-n and Yangbajing.

    图 3  CSNS反角白光中子源辐照实验布局示意图

    Figure 3.  Layout of the irradiation experiment at CSNS back-n

    图 4  不同测试图形下测得的器件SEU截面对比

    Figure 4.  Comparison between the SEE cross sections of devices with different test patterns.

    图 5  不同厂商相同特征尺寸SRAM器件SEU截面对比 (a) 350 nm SRAM; (b) 130 nm SRAM; (c) 65 nm SRAM

    Figure 5.  Comparison of the SEE cross sections of the devices with the same feature sizes from different manufacturer: (a) 350 nm SRAM; (b) 130 nm SRAM; (c) 65 nm SRAM.

    图 6  同一厂商系列不同特征尺寸SRAM器件SEU截面对比 (a) HITECHI/RENESAS HM系列SRAM; (b) Cypress CY1318系列SRAM;(c) Cypress CY62126系列SRAM; (d) ISSI IS6X系列SRAM

    Figure 6.  Comparison of the SEE cross sections of devices from the same manufacturer with different feature sizes: (a) HITECHI/RENESAS HM SRAM; (b) Cypress CY1318SRAM; (c) Cypress CY62126SRAM; (d) ISSI IS6X SRAM

    图 7  不同测试图形下MCU占比 (a) IS61WV204816(40 nm); (b) CY62126DV(130 nm); (c) HM62V8100 (180 nm); (d) IS64WV25616 (65 nm)

    Figure 7.  MCU rates of the devices with different test patterns: (a) IS61WV204816(40 nm); (b) CY62126DV(130 nm); (c) HM62V8100 (180 nm); (d) IS64WV25616 (65 nm)

    图 8  不同厂商相同特征尺寸SRAM器件MCU情况

    Figure 8.  MCU rates and sizes of the devices with the same feature sizes from different manufacturer.

    图 9  同一厂商系列不同特征尺寸SRAM器件MCU情况 (a) CY7C1318系列不同特征尺寸MCU情况; (b) IS6X系列不同特征尺寸MCU情况

    Figure 9.  MCU rates and sizes of the devices from the same manufacturer with different feature sizes: (a) CY7C1318; (b) IS6X

    表 1  待测SRAM器件参数

    Table 1.  Parameters of the SRAM devices for test.

    型号制造商容量/bits特征尺寸/nm工作电压/V
    HM628512AHITACHI4 M (512 K × 8)5005
    HM628512BHITACHI4 M (512 K × 8)3503.3
    HM62V8100RENESAS8 M (1 M × 8)1803.3
    IS62WV1288ISSI1 M (128 K × 8)1303.3
    IS64WV25616ISSI4 M (256 K × 16)653.3
    IS61WV204816ISSI32 M (2 M × 16)403.3
    CY62126VCypress1 M (64 K × 16)3503.0
    CY62126BVCypress1 M (64 K × 16)2503.0
    CY62126DVCypress1 M (64 K × 16)1303.0
    CY7C1318AV18Cypress18 M (1 M × 18)1501.8
    CY7C1318BV18Cypress18 M (1 M × 18)901.8
    CY7C1318KV18Cypress18 M (1 M × 18)651.8
    M328C国产256 K (32 K × 8)651.8
    DownLoad: CSV

    表 2  在CSNS反角白光中子源的SEU测试结果

    Table 2.  Test results of the SEUs at CSNS back-n.

    型号特征尺寸/nm测试图形容量/Mbit注量(>10 MeV)/108 n·cm–2翻转数/#翻转截面/10-14cm2·bit–1不确定度/%
    HM628512A5000x00H125.541762.5212.88
    0x55H127.212622.8912.13
    0xAAH125.382153.1812.47
    0xFFH125.362053.0412.56
    HM628512B3500x00H125.712072.8812.54
    0x55H87.031973.3412.64
    0xAAH128.973032.6911.92
    0xFFH123.261142.7814.03
    HM62V81001800x00H245.313432.5711.75
    0x55H245.293672.7611.67
    0xAAH245.293872.9111.61
    0xFFH245.363422.5311.76
    IS62WV12881300x00H19.52555.5117.05
    0xAAH38.051164.5813.97
    0xFFH310.201514.6813.24
    IS64WV25616650x00H84.762716.7912.08
    0x55H84.763398.4911.77
    0xAAH85.233818.6811.63
    0xFFH84.502757.2812.06
    IS61WV204816400x00H644.765341.6711.30
    0x55H644.765231.6411.32
    0xAAH644.765891.8411.22
    0xFFH646.357071.6611.10
    CY62126V3500x55H39.88642.0616.29
    0xAAH39.88712.2815.81
    CY62126BV2500x55H3128.005161.2811.33
    CY62126DV1300x00H310.401153.5314.00
    0x55H310.601394.1613.45
    0xAAH310.401414.3013.41
    0xFFH39.041063.7314.26
    CY7C1318AV181500X55H325.1212937.5210.80
    CY7C1318BV18900X55H324.693812.4211.63
    CY7C1318KV18650X55H325.093742.1911.65
    M328C650X55H0.751161671.8413.00
    DownLoad: CSV

    表 3  单粒子MCU提取结果

    Table 3.  Extraction results of the single event multiple cell upsets.

    型号特征尺寸/nm不同测试图形时MCU占比最大MCU位数
    0x000x55H0xAAH0xFFH
    HM628512A50000001
    HM628512B35000001
    HM62V81001802.33%5.94%1.09%4.68%2
    IS62WV128813004.65%02
    IS64WV25616659.59%9.14%6.01%0.73%3
    IS61WV2048164028.29%24.09%28.52%25.00%7
    CY62126V35000001
    CY62126BV25000001
    CY62126DV13040.00%35.97%35.46%45.28%3
    CY7C1318AV1815036.13%4
    CY7C1318BV189042.31%6
    CY7C1318KV186556.80%7
    M328C6514.37%2
    DownLoad: CSV
    Baidu
  • [1]

    Wrobel F, Palau J M, Calvet M C, Bersillon O, Duarte H 2000 IEEE Trans. Nucl. Sci. 47 2580Google Scholar

    [2]

    Hubert G, Bezerra F, Nicot J M, Artola L, Cheminet A, Valdivia J N, Mouret J M, Meyer J R, Cocquerez P 2014 IEEE Trans. Nucl. Sci. 61 1703Google Scholar

    [3]

    Autran J L, Munteanu D 2015 Microelectron. Reliab. 55 2147Google Scholar

    [4]

    Juan A C, Guillaume H, Francisco J F, Francesca V, Maud B, Hortensia M, Helmut P, Raoul V 2017 IEEE Trans. Nucl. Sci. 64 2188

    [5]

    Azambuja J R, Nazar G, Rech P, Carro L, Kastensmidt F L, Fairbanks T, Quinn H 2013 IEEE Trans. Nucl. Sci. 60 4243Google Scholar

    [6]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 2742Google Scholar

    [7]

    Quinn H, Graham P, Manuzzato A, Fairbanks T, Dallmann N, DesGeorges R 2010 IEEE Trans. Nucl. Sci. 57 3547

    [8]

    Abe S, Watanabe Y 2014 IEEE Trans. Nucl. Sci. 61 3519Google Scholar

    [9]

    Granlund T, Granbom B, Olsson N 2003 IEEE Trans. Nucl. Sci. 50 2065Google Scholar

    [10]

    Chen W, Guo X, Wang C, Zhang F, Qi C, Wang X, Jin X, Wei Y, Yang S, Song Z 2019 IEEE Trans. Nucl. Sci. 66 856Google Scholar

    [11]

    Lee U T, Monga S, Choi U, Lee J, Pae S 2018 IEEE Trans. Nucl. Sci. 65 1255Google Scholar

    [12]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [13]

    Dyer C S, Clucas S N, Sanderson C, Frydland A D, Green R T 2004 IEEE Trans. Nucl. Sci. 51 2817Google Scholar

    [14]

    Weulersse C, Guibbaud N, Beltrando A L, Galinat J, Beltrando C, Miller F, Trochet P, Alexandrescu D 2017 IEEE Trans. Nucl. Sci. 64 2268

    [15]

    郭晓强, 郭红霞, 王桂珍, 林东生, 陈伟, 白小燕, 杨善潮, 刘岩 2009 强激光与粒子束 21 1547

    Guo X Q, Guo H X, Wang G Z, Ling D S, Chen W, Bai X Y, Yang S C, Liu Y 2009 High Power Laser Particle Beams 21 1547

    [16]

    Yang W, Li Y, Li Y, Hu Z, Xie F, He C, Wang S, Zhou B, He H, Khan W, Liang T 2019 Microelectron. Reliab. 99 119Google Scholar

    [17]

    胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 68 238502Google Scholar

    Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar

    [18]

    JEDEC, Measurement and Reporting of Alpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices: JESD89 A, JEDEC STANDARD, vol.89, JEDEC Solid State Technology Association

    [19]

    Ni W, Jing H, Zhang L, Ou L 2018 Radiat. Phys. Chem. 152 43Google Scholar

    [20]

    鲍杰, 陈永浩, 张显鹏, 等 2019 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [21]

    Ahlbin, J R, Atkinson N M, Gadlage M J, Gaspard N J, Bhuva B L, Loveless T D, Zhang E X, Chen L, Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2585Google Scholar

    [22]

    Lilja K, Bounasser M, Wen S J, et al. 2013 IEEE Trans. Nucl. Sci. 60 2782Google Scholar

    [23]

    He Y, Chen S, Chen J, Chi Y, Liang B, Liu B, Qin J, Du Y, Huang P 2012 IEEE Trans. Nucl. Sci. 59 2772Google Scholar

    [24]

    Atkinson N M, Witulski A F, Holman W T, et al. 2011 IEEE Trans. Nucl. Sci. 58 885Google Scholar

    [25]

    Wang X, Ding L, Luo Y, Chen W, Zhang F, Guo X 2020 IEEE Trans. Nucl. Sci. 67 1443Google Scholar

    [26]

    王勋, 罗尹虹, 丁李利, 张凤祁, 陈伟, 郭晓强, 王坦 2020 原子能科学技术Google Scholar

    Wang X, Luo Y H, Ding L L, Zhang F Q, Chen W, Guo X Q, Wang T 2020 Atom. Energy Sci. Technol.Google Scholar

    [27]

    Radaelli D, Puchner H, Wong S, Daniel S 2005 IEEE Trans. Nucl. Sci. 52 2433Google Scholar

    [28]

    Yasuo Y, Hironaru Y, Eishi I, Hideaki K, Masatoshi S, Takashi A, Shigehisa Y 2007 IEEE Trans. Nucl. Sci. 54 1030Google Scholar

    [29]

    Zhang Z G, Liu J, Hou M D, et al. 2013 Chin. Phys. B 22 086102Google Scholar

    [30]

    Ikeda N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200Google Scholar

  • [1] Li Qiang, Li Yang, Lü You, Pan Zi-Wen, Bao Yu. Muon spectrometers on China Spallation Neutron Source and its application prospects. Acta Physica Sinica, 2024, 73(19): 197602. doi: 10.7498/aps.73.20240926
    [2] Zhang Zhan-Gang, Yang Shao-Hua, Lin Qian, Lei Zhi-Feng, Peng Chao, He Yu-Juan. Experimental study on real-time measurement of single-event effects of 14 nm FinFET and 28 nm planar CMOS SRAMs based on Qinghai-Tibet Plateau. Acta Physica Sinica, 2023, 72(14): 146101. doi: 10.7498/aps.72.20230161
    [3] Liu Ye, Guo Hong-Xia, Ju An-An, Zhang Feng-Qi, Pan Xiao-Yu, Zhang Hong, Gu Zhao-Qiao, Liu Yi-Tian, Feng Ya-Hui. Data inversion and erroneous annealing of floating gate cell under proton radiation. Acta Physica Sinica, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [4] Zhang Jiang-Lin, Jiang Bing, Chen Yong-Hao, Guo Zi-An, Wang Xiao-He, Jiang Wei, Yi Han, Han Jian-Long, Hu Ji-Feng, Tang Jing-Yu, Chen Jin-Gen, Cai Xiang-Zhou. Measurement of total neutron cross section of natural lithium at China Spallation Neutron Source Back-n facility. Acta Physica Sinica, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [5] Zhang Qi-Wei, Luan Guang-Yuan, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Cross section measurement of neutron capture reaction based on back-streaming white neutron source at China spallation neutron source. Acta Physica Sinica, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [6] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Wojtek Hajdas. Prediction of proton single event upset sensitivity based on heavy ion test data in nanometer hardened static random access memory. Acta Physica Sinica, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [7] Li Hua-Mei, Hou Peng-Fei, Wang Jin-Bin, Song Hong-Jia, Zhong Xiang-Li. Single-event-upset effect simulation of HfO2-based ferroelectric field effect transistor read and write circuits. Acta Physica Sinica, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [8] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [9] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [10] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Application and evaluation of Chinese spallation neutron source in single-event effects testing. Acta Physica Sinica, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [11] Hu Zhi-Liang, Yang Wei-Tao, Li Yong-Hong, Li Yang, He Chao-Hui, Wang Song-Lin, Zhou Bin, Yu Quan-Zhi, He Huan, Xie Fei, Bai Yu-Rong, Liang Tian-Jiao. Atmospheric neutron single event effect in 65 nm microcontroller units by using CSNS-BL09. Acta Physica Sinica, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [12] Zhang Zhan-Gang, Lei Zhi-Feng, Yue Long, Liu Yuan, He Yu-Juan, Peng Chao, Shi Qian, Huang Yun, En Yun-Fei. Single event upset characteristics and physical mechanism for nanometric SOI SRAM induced by space energetic ions. Acta Physica Sinica, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [13] Luo Yin-Hong, Guo Xiao-Qiang, Chen Wei, Guo Gang, Fan Hui. Energy and angular dependence of single event upsets in ESA SEU Monitor. Acta Physica Sinica, 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [14] Luo Yin-Hong, Zhang Feng-Qi, Wang Yan-Ping, Wang Yuan-Ming, Guo Xiao-Qiang, Guo Hong-Xia. Single event upsets sensitivity of low energy proton in nanometer static random access memory. Acta Physica Sinica, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [15] Shen Fei, Liang Tai-Ran, Yin Wen, Yu Quan-Zhi, Zuo Tai-Sen, Yao Ze-En, Zhu Tao, Liang Tian-Jiao. Shielding design of the multi-purpose reflectometer of China spallation neutron source. Acta Physica Sinica, 2014, 63(15): 152801. doi: 10.7498/aps.63.152801
    [16] Wang Xiao-Han, Guo Hong-Xia, Lei Zhi-Feng, Guo Gang, Zhang Ke-Ying, Gao Li-Juan, Zhang Zhan-Gang. Calculation of single event upset based on Monte Carlo and device simulations. Acta Physica Sinica, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [17] Ding Li-Li, Guo Hong-Xia, Chen Wei, Yan Yi-Hua, Xiao Yao, Fan Ru-Yu. Simulation study of the influence of ionizing irradiation on the single event upset vulnerability of static random access memory. Acta Physica Sinica, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [18] Yu Quan-Zhi, Yin Wen, Liang Tian-Jiao. Calculation and analysis of DPA in the main components of CSNS target station. Acta Physica Sinica, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [19] Zhang Ke-Ying, Guo Hong-Xia, Luo Yin-Hong, He Bao-Ping, Yao Zhi-Bin, Zhang Feng-Qi, Wang Yuan-Ming. Three-dimensional numerial simulation of single event upset effects in static random access memory. Acta Physica Sinica, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [20] Zhang Qing-Xiang, Hou Ming-Dong, Liu Jie, Wang Zhi-Guang, Jin Yun-Fan, Zhu Zhi-Yong, Sun You-Mei. The dependence of single event upset cross-section on incident angle. Acta Physica Sinica, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
Metrics
  • Abstract views:  6460
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  23 February 2020
  • Accepted Date:  18 May 2020
  • Available Online:  20 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回
Baidu
map