-
中子俘获反应截面数据在核天体物理研究、先进核能开发中具有非常重要的应用, 由于缺乏合适的白光中子源和探测装置, 国内在keV能区(1 eV—100 keV)中子俘获反应截面的实验数据几乎是空白. 中国原子能科学研究院核数据重点实验室建造了国内第一台γ全吸收型探测装置, 由40块BaF2探测器单元组成厚度为15 cm, 内半径为10 cm的BaF2晶体球壳, 共覆盖了95.2%的立体角. 利用升级后的装置在中国散裂中子源的反角白光中子源上建立了中子俘获反应截面在线测量技术. 在不规则的ϕ30 mm中子束斑的实验条件下, 完成首次197Au中子俘获反应截面的在线测量, 利用加和能谱和多重数分布扣除本底, 反演飞行时间谱得到keV能区197Au中子俘获反应截面的实验数据. 通过与ENDF评价数据库相关数据的比较, 共振峰位置能够很好地吻合, 从而验证了测量装置和测量技术的可靠性, 为下一步高精度截面数据的获取奠定基础.The data of neutron capture cross section are very important for the research of nuclear astrophysics, advanced nuclear energy development. Owing to the limitation of neutron source and detector, the experimental data of neutron capture cross section in an energy range of 1 eV–10 keV were almost blank in China. The first Chinese gamma-ray total absorption facility has been constructed in the key laboratory of nuclear data at China institute of atomic energy, which consists of 40 BaF2 detector units. The BaF2 crystal shell with a thickness of 15 cm and an inner radius of 10 cm covers 95.2% of the solid angle. On-line measurement method of neutron capture reaction cross section is established on the back-streaming white neutron source of China spallation neutron source by using the upgraded facility. The cross section of 197Au neutron capture reaction is measured for the first time under the experimental condition of irregular 30 mm neutron beam spot. The measured position of resonance peak is well consistent with the relevant data of ENDF evaluation database, which verifies the reliability of the measurement device and measurement technology, and thus laying the foundation for the acquisition of high precision cross section in future.
-
Keywords:
- gamma-ray total absorption facility /
- cross section of neutron capture /
- China spallation neutron source /
- white neutron source
[1] Arnould M, Katsuma M 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22–27, 2007 7
[2] Palmiotti G, Salvatores M, Assawaroongruengchot M 2009 International Conference on Fast Reactors and Related Fuel Cycles Kyoto, Japan, Dec. 07–11, 2009
[3] Kompe D 1969 Nucl. Phys. 133 513Google Scholar
[4] Wisshak K, Kappeler F, Reffo G 1984 Nucl. Sci. Eng. 88 594Google Scholar
[5] Terada K, Katabuchi T, Mizumoto M, et al. 2015 Progress in Nuclear Energy 82 118Google Scholar
[6] Kobayashi K, Lee S, Yamamoto S 2004 Nucl. Sci. Eng. 146 209Google Scholar
[7] Lee J, Hori J I, Nakajima K, Sano T, Lee S 2017 J. Nucl. Sci. Tech. 54 1046Google Scholar
[8] Kim H I, Paradela C, Sirakov I, et al. 2016 Eur. Phys. J. A 52 170Google Scholar
[9] Mingrone F, Massimi C, Altstadt S, et al. 2014 International Conference on Nuclear Data for Science and Technology NewYork, USA, Mar. 4–8, 2013 18
[10] Guber K H, Derrien H, Leal L C, Arbanas G, Wiarda D, Koehler P E, Harvey A 2010 Phys. Rev. C 82 057601Google Scholar
[11] Ren J, Ruan X, Bao J, et al. 2019 Radiation Detection Technology and Methods 3 52Google Scholar
[12] Wisshak K, Voss F, Kaeppeler F, Krticka M, Gallino R 2006 Phys. Rev. C 73 015802Google Scholar
[13] Mendoza E, Cano-Ott D, Altstadt S, et al. 2018 Phys. Rev. C 97 054616Google Scholar
[14] Mosby S, Bredeweg T A, Couture A, Jandel M, Kawano T, Ullmann J L, Henderson R A, Wu C Y 2018 Phys. Rev. C 97 041601
[15] Zhong Q P, Zhou Z Y, Tang H Q, et al. 2008 Chin. Phys. C 32 102
[16] 石斌, 彭猛, 张奇玮, 贺国珠, 周祖英, 唐洪庆 2018 原子能科学技术 52 1537Google Scholar
Shi B, Peng M, Zhang Q W, He G Z, Zhou Z Y, Tang H Q 2018 Atomic Energy Science and Technology 52 1537Google Scholar
[17] 张奇玮, 贺国珠, 栾广源, 程品晶, 阮锡超, 朱兴华 2021 强激光与粒子束 33 0440
Zhang Q W, He G Z, Luan G Y, Cheng P J, Ruan X C, Zhu X H 2021 Power Laser and Particle Beams 33 0440
[18] 唐靖宇, 安琪, 白怀勇, 等 2019 原子能科学技术 53 2012
Tang J Y, An Q, Bai H Y, et al. 2019 Atomic Energy Science and Technology 53 2012 (in Chinese)
[19] An Q, Bai H Y, Bao J, et al. 2017 Journal of Instrumentation 12 7022
[20] Tang J Y, Fu S N, Jing H T, Tang H Q, Wei J, Xia H H 2010 Chin. Phys. C 34 121Google Scholar
[21] Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P, Ruan X C 2010 Nucl. Instr. Meth. A 621 91Google Scholar
[22] 唐靖宇, 敬罕涛, 夏海鸿, 唐洪庆, 张闯, 周祖英, 阮锡超, 张奇玮, 杨征 2013 原子能科学技术 47 1089Google Scholar
Tang J Y, Jing H T, Xia H H, Tang H Q, Zhang C, Zhou Z Y, Ruan X C, Zhang Q W, Yang Z 2013 Atomic Energy Science and Technology 47 1089Google Scholar
[23] 任杰, 阮锡超, 唐洪庆, 葛智刚, 黄翰雄, 敬罕涛, 唐靖宇, 黄蔚玲 2014 核技术 37 110521
Ren J, Ruan X C, Tang H Q, Ge Z G, Huang H X, Jing H T, Tang J Y, Huang W L 2014 Nucl. Tech. 37 110521
[24] Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 115Google Scholar
[25] 鲍杰, 陈永浩, 张显鹏, 等 2019 68 080101Google Scholar
Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar
[26] 韩长材, 欧阳晓平, 张显鹏, 宋朝晖, 鲍杰, 严维鹏 2020 原子能科学技术 54 385Google Scholar
Han C C, Ouyang X P, Zhang X P, Song Z H, Bao J, Yan W P 2020 Atomic Energy Science and Technology 54 385Google Scholar
[27] 马霄云, 仲启平, 周祖英, 等 2009 原子能科学技术 43 180
Ma X Y, Zhong Q P, Zhou Z Y, et al. 2009 Atomic Energy Science and Technology 43 180
[28] 张奇玮, 贺国珠, 黄兴, 阮锡超, 李志宏, 朱兴华 2014 原子能科学技术 48 70
Zhang Q W, He G Z, Huang X, Ruan X C, Li Z H, Zhu X H 2014 Atomic Energy Science and Technology 48 70
[29] Yu T, Cao P, Ji X Y, et al. 2019 IEEE Transactions on Nuclear Science 66 1095Google Scholar
[30] Wang Q, Cao P, Qi X, et al. 2018 Review of Scientific Instruments 89 013511Google Scholar
[31] 张奇玮, 贺国珠, 黄兴, 程品晶, 阮锡超, 朱兴华 2016 原子能科学技术 50 536Google Scholar
Zhang Q W, He G Z, Huang X, Cheng P J, Ruan X C, Zhu X H 2016 Atomic Energy Science and Technology 50 536Google Scholar
[32] 张奇玮, 栾广源, 贺国珠, 程品晶, 阮锡超, 朱兴华 2020 原子核物理评论 37 771Google Scholar
Zhang Q W, Luan G Y, He G Z, Cheng P J, Ruan X C, Zhu X H 2020 Nuclear Physics Review 37 771Google Scholar
-
表 1 不同准直器孔径下实验厅2中子束斑尺寸的模拟结果
Table 1. Simulation result of neutron beam spot size at End-station 2 with different collimator aperture.
中子束斑
尺寸中子开关
孔径准直器1#
孔径准直器2#
孔径ϕ30 mm ϕ12 mm ϕ15 mm ϕ40 mm ϕ60 mm ϕ50 mm ϕ50 mm ϕ58 mm 90 mm × 90 mm 78 mm × 62 mm 76 mm × 76 mm 90 mm × 90 mm 表 2 实验样品参数
Table 2. The characteristics of experimental samples.
样品 密度/(g·cm–3) 直径/mm 厚度/mm 纯度/% 197Au 19.32 25 0.2 99.99 natC 2.25 25 1 99.99 -
[1] Arnould M, Katsuma M 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22–27, 2007 7
[2] Palmiotti G, Salvatores M, Assawaroongruengchot M 2009 International Conference on Fast Reactors and Related Fuel Cycles Kyoto, Japan, Dec. 07–11, 2009
[3] Kompe D 1969 Nucl. Phys. 133 513Google Scholar
[4] Wisshak K, Kappeler F, Reffo G 1984 Nucl. Sci. Eng. 88 594Google Scholar
[5] Terada K, Katabuchi T, Mizumoto M, et al. 2015 Progress in Nuclear Energy 82 118Google Scholar
[6] Kobayashi K, Lee S, Yamamoto S 2004 Nucl. Sci. Eng. 146 209Google Scholar
[7] Lee J, Hori J I, Nakajima K, Sano T, Lee S 2017 J. Nucl. Sci. Tech. 54 1046Google Scholar
[8] Kim H I, Paradela C, Sirakov I, et al. 2016 Eur. Phys. J. A 52 170Google Scholar
[9] Mingrone F, Massimi C, Altstadt S, et al. 2014 International Conference on Nuclear Data for Science and Technology NewYork, USA, Mar. 4–8, 2013 18
[10] Guber K H, Derrien H, Leal L C, Arbanas G, Wiarda D, Koehler P E, Harvey A 2010 Phys. Rev. C 82 057601Google Scholar
[11] Ren J, Ruan X, Bao J, et al. 2019 Radiation Detection Technology and Methods 3 52Google Scholar
[12] Wisshak K, Voss F, Kaeppeler F, Krticka M, Gallino R 2006 Phys. Rev. C 73 015802Google Scholar
[13] Mendoza E, Cano-Ott D, Altstadt S, et al. 2018 Phys. Rev. C 97 054616Google Scholar
[14] Mosby S, Bredeweg T A, Couture A, Jandel M, Kawano T, Ullmann J L, Henderson R A, Wu C Y 2018 Phys. Rev. C 97 041601
[15] Zhong Q P, Zhou Z Y, Tang H Q, et al. 2008 Chin. Phys. C 32 102
[16] 石斌, 彭猛, 张奇玮, 贺国珠, 周祖英, 唐洪庆 2018 原子能科学技术 52 1537Google Scholar
Shi B, Peng M, Zhang Q W, He G Z, Zhou Z Y, Tang H Q 2018 Atomic Energy Science and Technology 52 1537Google Scholar
[17] 张奇玮, 贺国珠, 栾广源, 程品晶, 阮锡超, 朱兴华 2021 强激光与粒子束 33 0440
Zhang Q W, He G Z, Luan G Y, Cheng P J, Ruan X C, Zhu X H 2021 Power Laser and Particle Beams 33 0440
[18] 唐靖宇, 安琪, 白怀勇, 等 2019 原子能科学技术 53 2012
Tang J Y, An Q, Bai H Y, et al. 2019 Atomic Energy Science and Technology 53 2012 (in Chinese)
[19] An Q, Bai H Y, Bao J, et al. 2017 Journal of Instrumentation 12 7022
[20] Tang J Y, Fu S N, Jing H T, Tang H Q, Wei J, Xia H H 2010 Chin. Phys. C 34 121Google Scholar
[21] Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P, Ruan X C 2010 Nucl. Instr. Meth. A 621 91Google Scholar
[22] 唐靖宇, 敬罕涛, 夏海鸿, 唐洪庆, 张闯, 周祖英, 阮锡超, 张奇玮, 杨征 2013 原子能科学技术 47 1089Google Scholar
Tang J Y, Jing H T, Xia H H, Tang H Q, Zhang C, Zhou Z Y, Ruan X C, Zhang Q W, Yang Z 2013 Atomic Energy Science and Technology 47 1089Google Scholar
[23] 任杰, 阮锡超, 唐洪庆, 葛智刚, 黄翰雄, 敬罕涛, 唐靖宇, 黄蔚玲 2014 核技术 37 110521
Ren J, Ruan X C, Tang H Q, Ge Z G, Huang H X, Jing H T, Tang J Y, Huang W L 2014 Nucl. Tech. 37 110521
[24] Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 115Google Scholar
[25] 鲍杰, 陈永浩, 张显鹏, 等 2019 68 080101Google Scholar
Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar
[26] 韩长材, 欧阳晓平, 张显鹏, 宋朝晖, 鲍杰, 严维鹏 2020 原子能科学技术 54 385Google Scholar
Han C C, Ouyang X P, Zhang X P, Song Z H, Bao J, Yan W P 2020 Atomic Energy Science and Technology 54 385Google Scholar
[27] 马霄云, 仲启平, 周祖英, 等 2009 原子能科学技术 43 180
Ma X Y, Zhong Q P, Zhou Z Y, et al. 2009 Atomic Energy Science and Technology 43 180
[28] 张奇玮, 贺国珠, 黄兴, 阮锡超, 李志宏, 朱兴华 2014 原子能科学技术 48 70
Zhang Q W, He G Z, Huang X, Ruan X C, Li Z H, Zhu X H 2014 Atomic Energy Science and Technology 48 70
[29] Yu T, Cao P, Ji X Y, et al. 2019 IEEE Transactions on Nuclear Science 66 1095Google Scholar
[30] Wang Q, Cao P, Qi X, et al. 2018 Review of Scientific Instruments 89 013511Google Scholar
[31] 张奇玮, 贺国珠, 黄兴, 程品晶, 阮锡超, 朱兴华 2016 原子能科学技术 50 536Google Scholar
Zhang Q W, He G Z, Huang X, Cheng P J, Ruan X C, Zhu X H 2016 Atomic Energy Science and Technology 50 536Google Scholar
[32] 张奇玮, 栾广源, 贺国珠, 程品晶, 阮锡超, 朱兴华 2020 原子核物理评论 37 771Google Scholar
Zhang Q W, Luan G Y, He G Z, Cheng P J, Ruan X C, Zhu X H 2020 Nuclear Physics Review 37 771Google Scholar
计量
- 文章访问数: 7470
- PDF下载量: 159
- 被引次数: 0