搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟

黎华梅 侯鹏飞 王金斌 宋宏甲 钟向丽

引用本文:
Citation:

HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟

黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽

Single-event-upset effect simulation of HfO2-based ferroelectric field effect transistor read and write circuits

Li Hua-Mei, Hou Peng-Fei, Wang Jin-Bin, Song Hong-Jia, Zhong Xiang-Li
PDF
HTML
导出引用
  • 使用器件-电路仿真方法搭建了氧化铪基铁电场效应晶体管读写电路, 研究了单粒子入射铁电场效应晶体管存储单元和外围灵敏放大器敏感节点后读写数据的变化情况, 分析了读写数据波动的内在机制. 结果表明: 高能粒子入射该读写电路中的铁电存储单元漏极时, 处于“0”状态的存储单元产生的电子空穴对在器件内部堆积, 使得栅极的电场强度和铁电极化增大, 而处于“1”状态的存储单元由于源极的电荷注入作用使得输出的瞬态脉冲电压信号有较大波动; 高能粒子入射放大器灵敏节点时, 产生的收集电流使处于读“0”状态的放大器开启, 导致输出数据波动, 但是其波动时间仅为0.4 ns, 数据没有发生单粒子翻转能正常读出. 两束高能粒子时间间隔0.5 ns先后作用铁电存储单元漏极, 比单束高能粒子产生更大的输出数据信号波动, 读写“1”状态的最终输出电压差变小.
    Ferroelectric field effect transistor (FeFET) is a promising memory cell for space application. The FeFET can achieve non-destructive reading, and has the advantages of simple structure and high integration. Ferroelectric thin film’s size effect, retention performance and radiation resistance of ferroelectric thin films directly determine the performances of FeFET devices. The HfO2 is widely used as a dielectric in complementary metal oxide semiconductor (CMOS) device and can solve the common integration problems for ferroelectric materials due to its CMOS compatibility. When the HfO2-based FeFETs are applied to aerospace electronics, the effects of various radiation particles need to be considered. The HfO2-based FeFET memory is still in the experimental stage, and there are no products of HfO2-based FeFET chips available from the market, so it is difficult to carry out experimental research on its single particle effect In the case of lacking the finished products of HfO2-based FeFET devices, using the device-hybrid simulation method to study the HfO2-based FeFET single-particle effect is a necessary and feasible content for the research on HfO2-based FeFET single-particle effects. In this paper, the device-circuit simulation method is used to build a read-write circuit of HfO2-based ferroelectric field-effect transistor. The change of read and write data after a single particle is incident on a ferroelectric field effect transistor memory cell and a sensitive node of a peripheral sense amplifier is studied, and the internal mechanism of read and write data fluctuation is analyzed. The results show that when high-energy particles enter into the drain of the ferroelectric memory cell in the read-write circuit, the memory cells in the “0” state generate electron-hole pairs, which accumulate inside the device, causing the gate electric field strength and ferroelectricity to increase, and the memory cell in the “1” state has a large fluctuation in the output transient pulse voltage signal due to the charge injection of the source, indicating that the ferroelectric memory cell has a good performance against particle flipping; when high-energy particles enter into the amplifier’s sensitive node, a collection current is generated, causing the amplifier in the state of reading “0” to turn on, and the output data to fluctuate. Owing to the fluctuation time being only 0.4 ns, the data does not have single-particle flipping energy under normal readout, and the HfO2-based FeFET read-write circuit has excellent resistance to single particles. When two beams of high-energy particles act on the drain of a ferroelectric memory cell successively in a time interval of 0.5 ns, the output data signal fluctuates more than in the case of a single beam of high-energy particles, and the final output voltage difference in the reading and writing “1” state becomes smaller.
      通信作者: 侯鹏飞, pfhou@xtu.edu.cn ; 钟向丽, xlzhong@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875229)和电子元器件可靠性物理及其应用技术重点实验室开放基金(批准号: ZHD201803)资助的课题
      Corresponding author: Hou Peng-Fei, pfhou@xtu.edu.cn ; Zhong Xiang-Li, xlzhong@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11875229) and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No.ZHD201803)
    [1]

    Irom F, Nguyen D N, Underwood M L, Virtanen A 2010 IEEE Trans. Nucl. Sci. 57 3329Google Scholar

    [2]

    Weller R A, Mendenhall M H, Reed R A, Schrimpf R D 2010 Trans. Nucl. Sci. 57 1726Google Scholar

    [3]

    付承菊, 郭冬云 2006 微纳电子技术 9 14

    Fu C J, Guo D Y 2006 Micro-nano Technology 9 14

    [4]

    Mikolajick T, Slesazeck S, Park M H, Schroeder U 2018 MRS Bull. 43 340Google Scholar

    [5]

    Li H, Hu M, Li C, Duan S 2014 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) Tampa, FL, USA, July 9−11, 2014 p65

    [6]

    何伟 2014 硕士学位论文 (成都: 电子科技大学)

    He W 2007 Ph. D. Dissertation (Chendu: University of Electronic Science and Technology) (in Chinese)

    [7]

    Sharma D K, Khosla R, Sharma S K 2015 Solid-State Electron. 42 111Google Scholar

    [8]

    Wang P, Wang Y, Ye L, Wu M, Xie R, Wang X, Hu W 2018 Small 14 1800492Google Scholar

    [9]

    Wang J, Fang H, Wang X, Chen X, Lu W, Hu W 2017 Small 13 1700894Google Scholar

    [10]

    Wang X, Wang P, Wang J, Hu, W., Zhou, X, Guo N, Chu J 2015 Adv. Mater. 27 6575Google Scholar

    [11]

    Tu L, Cao R, Wang X, Chen Y, Wu S, Wang F, Chu J 2020 Nat. Commun. 11 1Google Scholar

    [12]

    Tu L, Wang X, Wang J, Meng X, Chu J 2018 Adv. Electron. Mater. 4 1800231Google Scholar

    [13]

    唐明华 2007 博士学位论文 (湘潭: 湘潭大学)

    Tang M H 2007 Ph. D. Dissertation (Xiangtan: Xiangtan University) (in Chinese)

    [14]

    Amusan O A, Massengill L W, Baze M P 2007 IEEE Trans. Nucl. Sci. 54 2584Google Scholar

    [15]

    Coic Y M, Musseau O, Leray J L 1994 IEEE Trans. Nucl. Sci. 41 495Google Scholar

    [16]

    Li X, Lai L 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) Hong Kong, China, July 8−11, 2018 p750

    [17]

    Ni K, Li X Q, Jeffrey A S, Matthew J, Suman D 2018 IEEE Electron Device Lett. 39 1656Google Scholar

    [18]

    Lee D, Yoon A, Jang S Y, Yoon J G, Chung J S, Kim M, Scott J F, Noh T W 2011 Phys. Rev. Lett. 107 057602Google Scholar

    [19]

    Takahashi M, Zhang W, Sakai S 2018 IEEE International Memory Workshop (IMW) Kyoto, Japan, May 13−16, 2018 p1

    [20]

    Gong N B, Ma T P 2016 IEEE Electron Device Lett. 37 1123Google Scholar

    [21]

    Sharma A, Roy K 2018 IEEE Electron Device Lett. 39 359Google Scholar

    [22]

    刘巧灵 2018 硕士学位论文 (湘潭: 湘潭大学)

    Liu Q L 2018 Ph. D. Dissertation (Xiangtan: Xiangtan University) (in Chinese)

    [23]

    丁曼 2019 强激光与粒子束 31 066001Google Scholar

    Ding M 2019 Strong Laser and Particle Beam 31 066001Google Scholar

    [24]

    Bosser A L, Gupta V, Javanainen A 2018 IEEE Trans. Nucl. Sci. 65 1708Google Scholar

    [25]

    Yan S A, Tang M H, Zhao W, Guo H X, Zhang W L, Xu X Y, Wang X D, Ding H, Chen J W, Li Z, Zhou Y C 2014 Chin. Phys. B 23 046104Google Scholar

    [26]

    Synopsys Inc. https://www.synopsys.com/silicon/tcad.html [2019-11-10]

    [27]

    Nanoscale Integration and Modeling Group http://ptm.asu.edu/ [2019-11-10]

    [28]

    Miller S L, Mcwhorter P J 1992 J. Appl. Phys. 72 5999Google Scholar

  • 图 1  HfO2基FeFET器件物理模型

    Fig. 1.  Device physical models of HfO2-based FeFET.

    图 2  2 × 2铁电存储阵列的读写电路

    Fig. 2.  Read and write circuit of 2 × 2 ferroelectric memory array.

    图 3  2 × 2铁电存储阵列控制仿真时序

    Fig. 3.  Control simulation timing of 2 × 2 ferroelectric memory array.

    图 4  HfO2基FeFET写入时器件内部的电荷密度分布 (a)写入“1”器件内部电荷分布; (b)写入“0”时器件内部电荷分布

    Fig. 4.  Charge density distribution inside the device when HfO2-based FeFET is written: (a) The internal charge distribution of the device is written with “1”; (b) the internal charge distribution of the device is written with “0”.

    图 5  铁电存储阵列的读写信号 (a)灵敏放大器输出信号变化; (b) cell 1输出信号变化; (c) cell 1极化强度变化

    Fig. 5.  Reading and writing of ferroelectric memory arrays: (a) Changes in the output signal of the sense amplifier; (b) changes in the output signal of cell 1; (c) changes in the polarization of cell 1.

    图 6  单粒子入射读写“0”铁电存储单元cell 1漏极的瞬态效应 (a) cell 1漏极电流脉冲变化; (b) cell 1输出信号变化; (c) cell 1极化强度变化; (d)灵敏放大器输出信号变化

    Fig. 6.  Transient effects of single-particle incident read and write “0” ferroelectric storage tube drain: (a) Change of drain current pulse; (b) change of cell 1 output signal; (c) change of cell 1 polarization intensity; (d) change of sense amplifier output signal.

    图 7  单粒子入射读写“1”铁电存储单元cell 1漏极的瞬态效应 (a) cell 1极化强度变化; (b) cell 1输出信号变化; (c)灵敏放大器输出信号变化

    Fig. 7.  Transient effects of single-particle incident read and write “1” ferroelectric storage tube drain: (a) Change of cell 1 polarization intensity; (b) change of cell 1 output signal; (c) change of sense amplifier output signal.

    图 8  读写“0”时, 单粒子入射灵敏放大器输入管的瞬态效应 (a)铁电存储单元cell 1极化强度变化; (b)灵敏放大器输出信号变化

    Fig. 8.  Transient effects of a single-particle incident sensible amplifier input tube when reading and writing “0”: (a) Change of ferroelectric cell 1 polarization intensity; (b) change of sense amplifier output signal.

    图 9  读写“1”时, 单粒子入射灵敏放大器输入管的瞬态效应 (a)铁电存储管极化强度变化; (b)灵敏放大器输出信号变化

    Fig. 9.  Transient effects of a single-particle incident sensible amplifier input tube when reading and writing “1”: (a) Change of ferroelectric transistor polarization intensity; (b) change of sense amplifier output signal.

    图 10  单粒子作用于不同剩余极化和矫顽场的HZO铁电薄膜下的铁电存储单元cell 1的信号变化 (a) 铁电存储单元的极化强度变化; (b)灵敏放大器输出信号变化

    Fig. 10.  Signal change of ferroelectric memory cell cell 1 under single-particle HZO ferroelectric thin film with different remanent polarization and coercive field: (a) Change of ferroelectric transistor polarization intensity; (b) change of sense amplifier output signal.

    图 11  两束单粒子入射读写“1”铁电存储单元cell 1漏极的瞬态效应 (a) cell 1漏极电流脉冲变化; (b) cell 1极化强度变化; (c)灵敏放大器输出信号变化

    Fig. 11.  Transient effects of two single-particle incident read and write “1” ferroelectric storage tube drain: (a) Change of drain current pulse; (b) change of cell 1 polarization intensity; (c) change of sense amplifier output signal.

    图 12  两束单粒子入射读写“0”铁电存储单元cell 1漏极的瞬态效应 (a) cell 1极化强度变化; (b) 灵敏放大器输出信号变化

    Fig. 12.  Transient effects of two single-particle incident read and write “0” ferroelectric storage tube drain: (a) Change of cell 1 polarization intensity; (b) change of sense amplifier output signal.

    表 1  HfO2基FeFET工艺参数

    Table 1.  Process parameters of HfO2-FeFET.

    参数 数值
    多晶硅厚度/nm20
    栅氧层厚度/nm1
    铁电层厚度/nm10
    沟道长度/nm45
    N型衬底浓度/cm–31 × 1016
    N阱浓度/cm–35 × 1016
    源/漏浓度/cm–32 × 1020
    阈值电压掺杂浓度/cm–35 × 1017
    饱和极化值Ps/μC·cm–228
    剩余极化值Pr/μC·cm–223
    矫顽场强度Ec/MV·cm–11
    介电常数Eps22
    下载: 导出CSV

    表 2  输出端Out 1和Out 2之间的电位差变化

    Table 2.  Voltage difference change between Out 1 and Out 2.

    LET值/MeV·cm2·mg–1
    0102030120150180
    电压差/V1.91.851.71.210.950.9
    下载: 导出CSV
    Baidu
  • [1]

    Irom F, Nguyen D N, Underwood M L, Virtanen A 2010 IEEE Trans. Nucl. Sci. 57 3329Google Scholar

    [2]

    Weller R A, Mendenhall M H, Reed R A, Schrimpf R D 2010 Trans. Nucl. Sci. 57 1726Google Scholar

    [3]

    付承菊, 郭冬云 2006 微纳电子技术 9 14

    Fu C J, Guo D Y 2006 Micro-nano Technology 9 14

    [4]

    Mikolajick T, Slesazeck S, Park M H, Schroeder U 2018 MRS Bull. 43 340Google Scholar

    [5]

    Li H, Hu M, Li C, Duan S 2014 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) Tampa, FL, USA, July 9−11, 2014 p65

    [6]

    何伟 2014 硕士学位论文 (成都: 电子科技大学)

    He W 2007 Ph. D. Dissertation (Chendu: University of Electronic Science and Technology) (in Chinese)

    [7]

    Sharma D K, Khosla R, Sharma S K 2015 Solid-State Electron. 42 111Google Scholar

    [8]

    Wang P, Wang Y, Ye L, Wu M, Xie R, Wang X, Hu W 2018 Small 14 1800492Google Scholar

    [9]

    Wang J, Fang H, Wang X, Chen X, Lu W, Hu W 2017 Small 13 1700894Google Scholar

    [10]

    Wang X, Wang P, Wang J, Hu, W., Zhou, X, Guo N, Chu J 2015 Adv. Mater. 27 6575Google Scholar

    [11]

    Tu L, Cao R, Wang X, Chen Y, Wu S, Wang F, Chu J 2020 Nat. Commun. 11 1Google Scholar

    [12]

    Tu L, Wang X, Wang J, Meng X, Chu J 2018 Adv. Electron. Mater. 4 1800231Google Scholar

    [13]

    唐明华 2007 博士学位论文 (湘潭: 湘潭大学)

    Tang M H 2007 Ph. D. Dissertation (Xiangtan: Xiangtan University) (in Chinese)

    [14]

    Amusan O A, Massengill L W, Baze M P 2007 IEEE Trans. Nucl. Sci. 54 2584Google Scholar

    [15]

    Coic Y M, Musseau O, Leray J L 1994 IEEE Trans. Nucl. Sci. 41 495Google Scholar

    [16]

    Li X, Lai L 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) Hong Kong, China, July 8−11, 2018 p750

    [17]

    Ni K, Li X Q, Jeffrey A S, Matthew J, Suman D 2018 IEEE Electron Device Lett. 39 1656Google Scholar

    [18]

    Lee D, Yoon A, Jang S Y, Yoon J G, Chung J S, Kim M, Scott J F, Noh T W 2011 Phys. Rev. Lett. 107 057602Google Scholar

    [19]

    Takahashi M, Zhang W, Sakai S 2018 IEEE International Memory Workshop (IMW) Kyoto, Japan, May 13−16, 2018 p1

    [20]

    Gong N B, Ma T P 2016 IEEE Electron Device Lett. 37 1123Google Scholar

    [21]

    Sharma A, Roy K 2018 IEEE Electron Device Lett. 39 359Google Scholar

    [22]

    刘巧灵 2018 硕士学位论文 (湘潭: 湘潭大学)

    Liu Q L 2018 Ph. D. Dissertation (Xiangtan: Xiangtan University) (in Chinese)

    [23]

    丁曼 2019 强激光与粒子束 31 066001Google Scholar

    Ding M 2019 Strong Laser and Particle Beam 31 066001Google Scholar

    [24]

    Bosser A L, Gupta V, Javanainen A 2018 IEEE Trans. Nucl. Sci. 65 1708Google Scholar

    [25]

    Yan S A, Tang M H, Zhao W, Guo H X, Zhang W L, Xu X Y, Wang X D, Ding H, Chen J W, Li Z, Zhou Y C 2014 Chin. Phys. B 23 046104Google Scholar

    [26]

    Synopsys Inc. https://www.synopsys.com/silicon/tcad.html [2019-11-10]

    [27]

    Nanoscale Integration and Modeling Group http://ptm.asu.edu/ [2019-11-10]

    [28]

    Miller S L, Mcwhorter P J 1992 J. Appl. Phys. 72 5999Google Scholar

  • [1] 张战刚, 杨少华, 林倩, 雷志锋, 彭超, 何玉娟. 基于青藏高原的14 nm FinFET和28 nm平面CMOS工艺SRAM单粒子效应实时测量试验.  , 2023, 72(14): 146101. doi: 10.7498/aps.72.20230161
    [2] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火.  , 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [3] 沈睿祥, 张鸿, 宋宏甲, 侯鹏飞, 李波, 廖敏, 郭红霞, 王金斌, 钟向丽. 全耗尽绝缘体上硅氧化铪基铁电场效应晶体管存储单元单粒子效应计算机模拟研究.  , 2022, 71(6): 068501. doi: 10.7498/aps.71.20211655
    [4] 赵雯, 陈伟, 罗尹虹, 贺朝会, 沈忱. 离子径迹特征与纳米反相器链单粒子瞬态的关联性研究.  , 2021, 70(12): 126102. doi: 10.7498/aps.70.20210192
    [5] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究.  , 2020, (): 006100. doi: 10.7498/aps.69.20191796
    [6] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究.  , 2020, 69(13): 136103. doi: 10.7498/aps.69.20201796
    [7] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比.  , 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [8] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性.  , 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [9] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究.  , 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [10] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象.  , 2020, 69(8): 086101. doi: 10.7498/aps.69.20191896
    [11] 高占占, 侯鹏飞, 郭红霞, 李波, 宋宏甲, 王金斌, 钟向丽. 选择性埋氧层上硅器件的单粒子瞬态响应的温度相关性.  , 2019, 68(4): 048501. doi: 10.7498/aps.68.20191932
    [12] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究.  , 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [13] 罗尹虹, 郭晓强, 陈伟, 郭刚, 范辉. 欧空局监测器单粒子翻转能量和角度相关性.  , 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [14] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究.  , 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [15] 赵星, 梅博, 毕津顺, 郑中山, 高林春, 曾传滨, 罗家俊, 于芳, 韩郑生. 0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体电路单粒子瞬态特性研究.  , 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [16] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法.  , 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [17] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究.  , 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [18] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟.  , 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [19] 王 华, 任鸣放. Ag/Bi4Ti3O12栅n沟道铁电场效应晶体管制备及存储特性.  , 2006, 55(3): 1512-1516. doi: 10.7498/aps.55.1512
    [20] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究.  , 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
计量
  • 文章访问数:  8319
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-02-23
  • 刊出日期:  2020-05-05

/

返回文章
返回
Baidu
map