Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on real-time measurement of single-event effects of 14 nm FinFET and 28 nm planar CMOS SRAMs based on Qinghai-Tibet Plateau

Zhang Zhan-Gang Yang Shao-Hua Lin Qian Lei Zhi-Feng Peng Chao He Yu-Juan

Citation:

Experimental study on real-time measurement of single-event effects of 14 nm FinFET and 28 nm planar CMOS SRAMs based on Qinghai-Tibet Plateau

Zhang Zhan-Gang, Yang Shao-Hua, Lin Qian, Lei Zhi-Feng, Peng Chao, He Yu-Juan
PDF
HTML
Get Citation
  • Based on the Yangbajing International Cosmic Ray Observatory in Lhasa with an altitude of 4300 m, a long-term real-time experiment is carried out in order to measure the atmospheric radiation induced soft errors in 14 nm FinFET and 28 nm planar CMOS SRAM array. The underlying mechanisms are also revealed. Five boards are used in the test, four of which are equipped with 28-nm process devices, and one board is equipped with 14-nm process devices. After removing the unstable bad bits, the actual effective test capacity is 7.1 Gb. During the test, the on-board FPGA reads the stored contents of all the tested devices in real time, reports the error information (occurrence time, board number, column number, device number, error address, error data) and corrects the error. The duration of the test is 6651 h. A total of 56 single event upset (SEU) events are observed, they being 24 single bit upset (SBU) events and 32 Multiple Cell Upset (MCU) events. Based on previous results of 65-nm SRAM, the study finds that SER continues to decrease with the reduction of process size, but the proportion of MCU in 28-nm process devices (57%) exceeds SBU, which is a process “maximum point” of MCU sensitivity, and the maximum size of MCU is 16 bits. Although the Fin spacing of the 14-nm FinFET device is only about 35 nm, and the critical charge decreases to sub-fC, the introduction of the FinFET structure leads to the change of charge collection and the sensitive volume sharing mechanism , and the shallow trench isolation leads to the narrowing of the charge diffusion channel. On the other hand, the surface area of the sensitive volume decreases to 0.0024 μm2, resulting in a significant decrease in the soft error rate of both SBU and MCU in the 14-nm process.
      Corresponding author: Yang Shao-Hua, young01@163.com ; Lin Qian, 523618482@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175045, 12075065) and the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2022B0701180002).
    [1]

    Ziegler J 2004 SER-History, Trends and Challenges (San Jose: Cypress Semiconductor) pp1–50

    [2]

    JESD89 A 2006 Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices JEDEC standard, October 2006

    [3]

    张战刚, 雷志锋, 黄云, 恩云飞, 张毅, 童腾, 李晓辉, 师谦, 彭超, 何玉娟, 肖庆中, 李键坷, 路国光 2022 原子能科学技术 56 725

    Zhang Z G, Lei Z F, Huang Y, En Y F, Zhang Y, Tong T, Li X H, Shi Q, Peng C, He Y J, Xiao Q Z, Li J K, Lu G G 2022 At. Energy Sci. Technol. 56 725

    [4]

    Seifert N, Kirsch M 2012 IEEE Trans. Nucl. Sci. 59 2818Google Scholar

    [5]

    Autran J L, Munteanu D, Serre S, Sauze S 2012 IEEE International Reliability Physics Symposium (IRPS) Anaheim, CA, April 15–19, 2012 p5B.1.1

    [6]

    Autran J L, Roche P, Borel J, Sudre C, Castellani-Coulié K, Munteanu D, Parrassin T, Gasiot G, Schoellkopf J P 2007 IEEE Trans. Nucl. Sci. 54 1002Google Scholar

    [7]

    Autran J L, Roche P, Sauze S, Gasiot G, Munteanu D, Loaiza P, Zampaolo M, Borel J 2009 IEEE Trans. Nucl. Sci. 56 2258Google Scholar

    [8]

    Autran J L, Munteanu D, Roche P, Gasiot G, Martinie S, Uznanski S, Sauze S, Semikh S, Yakushev E, Rozov S, Loaiza P, Warot G, Zampaolo M 2010 Microelectron. Reliab. 50 1822Google Scholar

    [9]

    Xilinx, Device reliability report (UG116), https://www.xilinx.com/ [2023-2-1]

    [10]

    Lesea A, Drimer S, Fabula J J, Carmichael C, Alfke P 2005 IEEE Trans. Device Mater. Reliab. 5 317Google Scholar

    [11]

    White paper: Xilinx FPGA families, “Continuing experiments of atmospheric neutron effects on deep submicron integrated circuits” WP286 (v2.0), Mar. 22, 2016

    [12]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [13]

    Chen W, Guo X, Wang C, Zhang F, Qi C, Wang X, Jin X, Wei Y, Yang S, Song Z 2019 IEEE Trans. Nucl. Sci. 66 856Google Scholar

    [14]

    Hubert G, Velazco R, Federico C, Cheminet A, Silva-Cardenas C, Caldas L V E, Pancher F, Lacoste V, Palumbo F, Mansour W, Artola L, Pineda F, Duzellier S 2013 IEEE Trans. Nucl. Sci. 60 2418Google Scholar

    [15]

    Alexandrescu D, Lhomme-Perrot A, Schaefer E, Beltrando C 2009 15th IEEE International On-Line Testing Symposium Sesimbra, Lisbon, Portugal, June 24–26, 2009 p179

    [16]

    Torok Z, Platt S P, Cai X X 2007 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10–14, 2007 p1

    [17]

    Tosaka Y, Takasu R, Uemura T, Ehara H, Matsuyama H, Satoh S, Kawai A, Hayashi M 2008 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 27–May 1, 2008 p727

    [18]

    Kameyama H, Yahagi Y, Ibe E 2007 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 15–19, 2007 p678

    [19]

    Ibe E, Yahagi Y, Kataoka F, Saito Y, Eto A, Sato M 2002 ICITA Bathurst, Australia, November 25–28, 2002 No. 273-21

    [20]

    Kobayashi H, Usuki H, Shiraishi K, Tsuchiya H, Kawamoto N, Merchant G, Kase J 2004 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 25–29, 2004 p288

    [21]

    Zhang Z G, Lei Z F, Tong T, Li X H, Xi K, Peng C, Shi Q, He Y J, Huang Y, En Y F 2019 IEEE Trans. Nucl. Sci. 66 1368Google Scholar

    [22]

    http://www.ihep.cas.cn/picture/dkxzz/ybjgjyzxgcz/ [2023-2-1]

    [23]

    http://phits.jaea.go.jp/expacs/ [2023-2-1]

    [24]

    https://cosmicrays.oulu.fi/ [2023-2-1]

    [25]

    Sierawski B D, Mendenhall M H, Reed R A, Clemens M A, Weller R A, Schrimpf R D, Blackmore E W, Trinczek M, Hitti B, Pellish J A, Baumann R C, Wen S J, Wong R, Tam N 2010 IEEE Tran. Nucl. Sci. 57 3273

    [26]

    Yang W T, Yin Q, Li Y, Guo G, Li Y H, He C H, Zhang Y W, Zhang F Q, Han J H 2019 Nucl. Sci. Techn. 30 45Google Scholar

    [27]

    张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞 2020 69 056101Google Scholar

    Zhang Z G, Lei Z F, Tong T, Li X H, Wang S L, Liang T J, Xi K, Peng C, He Y J, Huang Y, En Y F 2020 Acta Phys. Sin. 69 056101Google Scholar

    [28]

    Yang S H, Zhang Z G, Lei Z F, Huang Y, Xi K, Wang S L, Liang T J, Tong T, Li X H, Peng C, Wu F G, Li B 2022 Chin. Phys. B 31 126103Google Scholar

  • 图 1  羊八井国际宇宙射线观测站

    Figure 1.  Yangbajing International Cosmic Ray Observatory.

    图 2  试验现场图及测试结果

    Figure 2.  Experimental setup and test results.

    图 3  上位机软件测试界面

    Figure 3.  Software test interface on the computer.

    图 4  试验流程图

    Figure 4.  Test flow chart.

    图 5  高海拔试验点的大气辐射环境[3]

    Figure 5.  Atmospheric radiation environment of the high-altitude test site[3].

    图 6  SEU累积计数与TTF的关系图

    Figure 6.  Relationship between SEU cumulative count and TTF

    图 7  SEU, SBU和MCU SER与工艺尺寸的关系

    Figure 7.  Relationship between SERs of SEU, SBU, MCU and feature size.

    图 8  各种工艺尺寸下的SBU和MCU占比

    Figure 8.  Proportion of SBU and MCU under various feature sizes.

    图 9  芬兰奥卢宇宙射线站监测的大气中子通量变化情况(1965年至今)[24]

    Figure 9.  Changes of atmospheric neutron flux monitored by Oulu Cosmic Ray Station in Finland (1965 till now)[24].

    图 10  试验期间芬兰奥卢宇宙射线站监测的大气中子通量变化情况

    Figure 10.  Changes of atmospheric neutron flux monitored by Oulu Cosmic Ray Station in Finland during the test.

    图 11  14 nm FinFET器件的Fin结构图像

    Figure 11.  Fin structure of the 14 nm FinFET device.

    图 12  14 nm FinFET器件模型图

    Figure 12.  Model of the 14 nm FinFET device.

    图 13  不同入射角下两个器件的单粒子瞬态脉冲图 (a) T1瞬态脉冲; (b) T2瞬态脉冲

    Figure 13.  Single event transients of two transistors at different incidence angles: (a) T1 transient pulse; (b) T2 transient pulse.

    表 1  被测器件参数

    Table 1.  Parameters of devices under test.

    编号SRAM工艺型号容量核心电压/V测试板编号测试数量封装形式备注
    1#14 nm FinFETAG35128 Mbit (8 M×16 bit)0.84#18只倒装BGA总测试容量:
    7.1 Gbit
    (去除坏位)
    2#28 nm HKMGAH09F64 Mbit (4 M×16 bit)1.051#、2#各19只
    3#28 nm SIONAC8164 Mbit (4 M×16 bit)1.053#、5#17只、20只
    DownLoad: CSV

    表 2  测量结果汇总

    Table 2.  Summary of test results

    编号TTF /h板号列号器件编号错误地址错误数据错误类型
    开始测试
    12#B10x0C7A700x5455SBU
    21093#B20x06DBBC
    0x06DBCC
    0x55D5MCU2
    31905#B50x02B589
    0x02B599
    0x02B5A9
    0x55D5MCU3
    44605#D20x2CB0480x555DSBU
    55283#B10x3C23680x5D55SBU
    68611#B10x0B150F0x5575SBU
    72#A50x12ACC9
    0x12ACD9
    0x5455MCU2
    811281#C10x3C1F740x5755MCU3
    0x3C1F830x5755
    0x3C20010x5455
    92#B40x131353
    0x131354
    0x131363
    0x131364
    0x7555MCU4
    102#A10x040D82
    0x040D83
    0x040D92
    0x040D93
    0x5155MCU4
    1115745#B30x0B57250x5551SBU
    1215835#C20x0361450x5554SBU
    1317013#C40x03BBE8
    0x03BBE9
    0x03BBF8
    0x03BBF9
    0x5515MCU4
    1417283#C40x3D4BD8
    0x3D4BE8
    0x3D4BF7
    0x3D4BF8
    0x7555MCU4
    152#B30x201A55
    0x201A65
    0x5755MCU2
    162#C10x04931E0x5551SBU
    1718213#A20x01F573
    0x01F574
    0x01F583
    0x01F584
    0x01F593
    0x01F594
    0x01F5A3
    0x01F5E6
    0x5557MCU8
    1818965#D10x377B7B0x5515SBU
    192#C40x1371CB
    0x1371EA
    0x1371F9
    0x1371FA
    0x13720A
    0x13721A
    0x13722A
    0x137237
    0x137238
    0x137247
    0x137248
    0x137257
    0x137258
    0x137267
    0x137268
    0x137277
    0xD555MCU16
    202#A50x020319
    0x020329
    0x55D5MCU2
    212#B20x1EBD02
    0x1EBD12
    0x5545MCU2
    222#B20x1AA6E80x5557SBU
    232#D20x35DC4C
    0x35DC5C
    0x35DC6C
    0x555DMCU3
    2423365#C20x0DB4840x5554SBU
    2525371#C10x12C6AE
    0x12C6AF
    0x12C6BE
    0x12C6BF
    0x5155MCU4
    2626315#C50x1157DD
    0x1157ED
    0x1157EE
    0x1157FD
    0x1157FE
    0x5575MCU5
    2726595#B40x27B8630x4555SBU
    2828985#D30x22C4A80x5575SBU
    2929093#C10x1FC2CE0x7555SBU
    3030033#A20x30B1F3
    0x30B203
    0x30B213
    0x5551MCU3
    312#C10x2800CA
    0x2800D9
    0x2800E9
    0x5D55MCU3
    322#A40x256BB0
    0x256BB1
    0x256BC0
    0x256BC1
    0x256BD0
    0x256BD1
    0x256BE0
    0x256BE1
    0x4555MCU8
    3334441#A50x28940C
    0x28941C
    0x28941D
    0x5455MCU3
    3435771#A40x31B05F0x5155SBU
    3535861#B20x1491E7
    0x1491E8
    0x5575MCU2
    3636023#C10x250F89
    0x250F98
    0x5554MCU2
    3737055#B30x3CAAFA
    0x3CAAFB
    0x3CAB0A
    0x3CAB0B
    0x3CAB1A
    0x3CAB1B
    0x4555MCU6
    3837755#D10x2CADB40x5557SBU
    3939133#D10x3AC5DD
    0x3AC5DE
    0x5575MCU2
    4041913#B50x22DEA30x5455SBU
    4142163#D20x3785ED
    0x3785FD
    0x4555MCU2
    4244071#B20x3611650x5554SBU
    4346244#A30x64D7B00x5D55SBU
    4446521#A20x001763
    0x001754
    0x001753
    0xD555MCU3
    4549075#C50x1753E90x5575SBU
    462#B50x1A220A
    0x1A220B
    0x1A221A
    0x1A221B
    0x5155MCU4
    4753705#A40x0AF8C1
    0x0AF8D1
    0x0AF8E1
    0x0AF8F1
    0x555DMCU4
    4854685#B50x1D49870x5755SBU
    3#C50x0D82B00x5545假SEU
    3#C50x0D82B00x5545
    4960864#D40x1263CA0x4555SBU
    5060945#C50x3ECD72
    0x3ECD82
    0x5755MCU2
    512#D50x27340D
    0x27341D
    0x27342D
    0x27343D
    0x5545MCU4
    5262445#C30x077D9A0x5545SBU
    536244.23#C30x2890970x5155SBU
    542#A30x173626
    0x173636
    0x5554MCU2
    556248.25#B50x177AE10x5155SBU
    566390.25#C40x04619D
    0x0461BC
    0x7555MCU2
    6651.2试验结束
    DownLoad: CSV

    表 3  14 nm FinFET, 28 nm和65 nm SRAM的存储单元尺寸和灵敏区参数

    Table 3.  Memory cell size and SV parameters for the 14 nm FinFET, 28 nm and 65 nm SRAM devices.

    器件工艺65 nm28 nm14 nm FinFET
    存储区图像(未按比例)
    存储单元尺寸1000 nm×500 nm520 nm×240 nm370 nm×180 nm
    SV尺寸200 nm×190 nm104 nm×90 nm80 nm×30 nm
    临界电荷/fC1[25]0.18[26]0.05[27]
    DownLoad: CSV

    表 4  14 nm FinFET器件建模的结构参数

    Table 4.  Structural parameters for modeling 14 nm FinFET device.

    区域类别参数
    衬底厚度/nm100
    栅极长度/nm26
    栅氧层厚度/nm1.35
    Fin高/nm45
    Fin宽/nm14
    DownLoad: CSV

    表 5  14 nm FinFET器件模型掺杂情况

    Table 5.  Doping parameters of 14 nm FinFET device model.

    掺杂类别区域掺杂浓度/(1016 cm–3)
    均匀掺杂衬底1.0 (掺硼)
    沟道1.0 (掺硼)
    高斯掺杂漏区10000.0 (掺磷)
    源区10000.0 (掺磷)
    DownLoad: CSV
    Baidu
  • [1]

    Ziegler J 2004 SER-History, Trends and Challenges (San Jose: Cypress Semiconductor) pp1–50

    [2]

    JESD89 A 2006 Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices JEDEC standard, October 2006

    [3]

    张战刚, 雷志锋, 黄云, 恩云飞, 张毅, 童腾, 李晓辉, 师谦, 彭超, 何玉娟, 肖庆中, 李键坷, 路国光 2022 原子能科学技术 56 725

    Zhang Z G, Lei Z F, Huang Y, En Y F, Zhang Y, Tong T, Li X H, Shi Q, Peng C, He Y J, Xiao Q Z, Li J K, Lu G G 2022 At. Energy Sci. Technol. 56 725

    [4]

    Seifert N, Kirsch M 2012 IEEE Trans. Nucl. Sci. 59 2818Google Scholar

    [5]

    Autran J L, Munteanu D, Serre S, Sauze S 2012 IEEE International Reliability Physics Symposium (IRPS) Anaheim, CA, April 15–19, 2012 p5B.1.1

    [6]

    Autran J L, Roche P, Borel J, Sudre C, Castellani-Coulié K, Munteanu D, Parrassin T, Gasiot G, Schoellkopf J P 2007 IEEE Trans. Nucl. Sci. 54 1002Google Scholar

    [7]

    Autran J L, Roche P, Sauze S, Gasiot G, Munteanu D, Loaiza P, Zampaolo M, Borel J 2009 IEEE Trans. Nucl. Sci. 56 2258Google Scholar

    [8]

    Autran J L, Munteanu D, Roche P, Gasiot G, Martinie S, Uznanski S, Sauze S, Semikh S, Yakushev E, Rozov S, Loaiza P, Warot G, Zampaolo M 2010 Microelectron. Reliab. 50 1822Google Scholar

    [9]

    Xilinx, Device reliability report (UG116), https://www.xilinx.com/ [2023-2-1]

    [10]

    Lesea A, Drimer S, Fabula J J, Carmichael C, Alfke P 2005 IEEE Trans. Device Mater. Reliab. 5 317Google Scholar

    [11]

    White paper: Xilinx FPGA families, “Continuing experiments of atmospheric neutron effects on deep submicron integrated circuits” WP286 (v2.0), Mar. 22, 2016

    [12]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [13]

    Chen W, Guo X, Wang C, Zhang F, Qi C, Wang X, Jin X, Wei Y, Yang S, Song Z 2019 IEEE Trans. Nucl. Sci. 66 856Google Scholar

    [14]

    Hubert G, Velazco R, Federico C, Cheminet A, Silva-Cardenas C, Caldas L V E, Pancher F, Lacoste V, Palumbo F, Mansour W, Artola L, Pineda F, Duzellier S 2013 IEEE Trans. Nucl. Sci. 60 2418Google Scholar

    [15]

    Alexandrescu D, Lhomme-Perrot A, Schaefer E, Beltrando C 2009 15th IEEE International On-Line Testing Symposium Sesimbra, Lisbon, Portugal, June 24–26, 2009 p179

    [16]

    Torok Z, Platt S P, Cai X X 2007 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10–14, 2007 p1

    [17]

    Tosaka Y, Takasu R, Uemura T, Ehara H, Matsuyama H, Satoh S, Kawai A, Hayashi M 2008 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 27–May 1, 2008 p727

    [18]

    Kameyama H, Yahagi Y, Ibe E 2007 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 15–19, 2007 p678

    [19]

    Ibe E, Yahagi Y, Kataoka F, Saito Y, Eto A, Sato M 2002 ICITA Bathurst, Australia, November 25–28, 2002 No. 273-21

    [20]

    Kobayashi H, Usuki H, Shiraishi K, Tsuchiya H, Kawamoto N, Merchant G, Kase J 2004 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 25–29, 2004 p288

    [21]

    Zhang Z G, Lei Z F, Tong T, Li X H, Xi K, Peng C, Shi Q, He Y J, Huang Y, En Y F 2019 IEEE Trans. Nucl. Sci. 66 1368Google Scholar

    [22]

    http://www.ihep.cas.cn/picture/dkxzz/ybjgjyzxgcz/ [2023-2-1]

    [23]

    http://phits.jaea.go.jp/expacs/ [2023-2-1]

    [24]

    https://cosmicrays.oulu.fi/ [2023-2-1]

    [25]

    Sierawski B D, Mendenhall M H, Reed R A, Clemens M A, Weller R A, Schrimpf R D, Blackmore E W, Trinczek M, Hitti B, Pellish J A, Baumann R C, Wen S J, Wong R, Tam N 2010 IEEE Tran. Nucl. Sci. 57 3273

    [26]

    Yang W T, Yin Q, Li Y, Guo G, Li Y H, He C H, Zhang Y W, Zhang F Q, Han J H 2019 Nucl. Sci. Techn. 30 45Google Scholar

    [27]

    张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞 2020 69 056101Google Scholar

    Zhang Z G, Lei Z F, Tong T, Li X H, Wang S L, Liang T J, Xi K, Peng C, He Y J, Huang Y, En Y F 2020 Acta Phys. Sin. 69 056101Google Scholar

    [28]

    Yang S H, Zhang Z G, Lei Z F, Huang Y, Xi K, Wang S L, Liang T J, Tong T, Li X H, Peng C, Wu F G, Li B 2022 Chin. Phys. B 31 126103Google Scholar

  • [1] Xiao Shi-Liang, Wang Zhao-Hui, Wu Hong-Yi, Chen Xiong-Jun, Sun Qi, Tan Bo-Yu, Wang Hao, Qi Fu-Gang. Spectral analysis techniques in measuring neutron-induced gamma production cross-section. Acta Physica Sinica, 2024, 73(7): 072901. doi: 10.7498/aps.73.20231980
    [2] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [3] Liu Ye, Guo Hong-Xia, Ju An-An, Zhang Feng-Qi, Pan Xiao-Yu, Zhang Hong, Gu Zhao-Qiao, Liu Yi-Tian, Feng Ya-Hui. Data inversion and erroneous annealing of floating gate cell under proton radiation. Acta Physica Sinica, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [4] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Wojtek Hajdas. Prediction of proton single event upset sensitivity based on heavy ion test data in nanometer hardened static random access memory. Acta Physica Sinica, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [5] Li Hua-Mei, Hou Peng-Fei, Wang Jin-Bin, Song Hong-Jia, Zhong Xiang-Li. Single-event-upset effect simulation of HfO2-based ferroelectric field effect transistor read and write circuits. Acta Physica Sinica, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [6] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Experimental study on neutron single event effects of commercial SRAMs based on CSNS. Acta Physica Sinica, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [7] Mechanisms of Alpha Particle Induced Soft Errors in Nanoscale Static Random Access Memories. Acta Physica Sinica, 2020, (): 006100. doi: 10.7498/aps.69.20191796
    [8] Zhang Zhan-Gang, Ye Bing, Ji Qing-Gang, Guo Jin-Long, Xi Kai, Lei Zhi-Feng, Huang Yun, Peng Chao, He Yu-Juan, Liu Jie, Du Guang-Hua. Mechanisms of alpha particle induced soft errors in nanoscale static random access memories. Acta Physica Sinica, 2020, 69(13): 136103. doi: 10.7498/aps.69.20201796
    [9] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [10] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Application and evaluation of Chinese spallation neutron source in single-event effects testing. Acta Physica Sinica, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [11] Zhang Zhan-Gang, Lei Zhi-Feng, Yue Long, Liu Yuan, He Yu-Juan, Peng Chao, Shi Qian, Huang Yun, En Yun-Fei. Single event upset characteristics and physical mechanism for nanometric SOI SRAM induced by space energetic ions. Acta Physica Sinica, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [12] Luo Yin-Hong, Guo Xiao-Qiang, Chen Wei, Guo Gang, Fan Hui. Energy and angular dependence of single event upsets in ESA SEU Monitor. Acta Physica Sinica, 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [13] Luo Yin-Hong, Zhang Feng-Qi, Wang Yan-Ping, Wang Yuan-Ming, Guo Xiao-Qiang, Guo Hong-Xia. Single event upsets sensitivity of low energy proton in nanometer static random access memory. Acta Physica Sinica, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [14] Wang Xiao-Han, Guo Hong-Xia, Lei Zhi-Feng, Guo Gang, Zhang Ke-Ying, Gao Li-Juan, Zhang Zhan-Gang. Calculation of single event upset based on Monte Carlo and device simulations. Acta Physica Sinica, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [15] Ding Li-Li, Guo Hong-Xia, Chen Wei, Yan Yi-Hua, Xiao Yao, Fan Ru-Yu. Simulation study of the influence of ionizing irradiation on the single event upset vulnerability of static random access memory. Acta Physica Sinica, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [16] Huang Li, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Application of high-k dielectrics in novel semiconductor devices. Acta Physica Sinica, 2012, 61(13): 137701. doi: 10.7498/aps.61.137701
    [17] Li Xiao-Ling, Lin Shi-Yao, Hu Li-Qun, Xu Ping, Duan Yan-Min, Mao Song-Tao, Zhang Ji-Zhong, Wang Xiang-Qi, Zhong Guo-Qiang. Study of neutron radiation behavior for RF heating on HT-7. Acta Physica Sinica, 2011, 60(1): 012901. doi: 10.7498/aps.60.012901
    [18] Zhang Ke-Ying, Guo Hong-Xia, Luo Yin-Hong, He Bao-Ping, Yao Zhi-Bin, Zhang Feng-Qi, Wang Yuan-Ming. Three-dimensional numerial simulation of single event upset effects in static random access memory. Acta Physica Sinica, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [19] Zhang Qing-Xiang, Hou Ming-Dong, Liu Jie, Wang Zhi-Guang, Jin Yun-Fan, Zhu Zhi-Yong, Sun You-Mei. The dependence of single event upset cross-section on incident angle. Acta Physica Sinica, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
    [20] He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Li Guo-Zheng, Wang Yan-Ping. Mechanism of radiation effects in floating gate ROMs. Acta Physica Sinica, 2003, 52(9): 2235-2238. doi: 10.7498/aps.52.2235
Metrics
  • Abstract views:  3993
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  08 February 2023
  • Accepted Date:  22 March 2023
  • Available Online:  18 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回
Baidu
map