Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of source-drain conduction in single-event transient on nanoscaled bulk fin field effect transistor

Lu Chao Chen Wei Luo Yin-Hong Ding Li-Li Wang Xun Zhao Wen Guo Xiao-Qiang Li Sai

Citation:

Effect of source-drain conduction in single-event transient on nanoscaled bulk fin field effect transistor

Lu Chao, Chen Wei, Luo Yin-Hong, Ding Li-Li, Wang Xun, Zhao Wen, Guo Xiao-Qiang, Li Sai
PDF
HTML
Get Citation
  • Fin field effect transistor (FinFET) is a most widely used structure when the field effect transistor is scaled down to 30 nm or less. And there are few studies on single-event transient of FinFET devices with gate length below 30 nm. The single-event-transient on FinFET with gate length below 30 nm is worth studying. The single-event-transient responses of bulk FinFETs with 30 nm, 40 nm, 60 nm and 100 nm gate length are examined by using the pulsed laser and technology computer-aided design (TCAD) simulation in this article. First, we use the pulsed laser to ionize the gate of the FinFET device and detect the transient drain current of the FinFET device. The experimental results show that there are obvious platforms for the transient drain current tails of FinFETs with different gate lengths, and the platform current increases as the gate length of FinFET becomes shorter. The charges collected in the platform of FinFET devices with gate lengths of 100, 60, 40, and 30 nm are 34%, 40%, 51%, and 65% of the total charge collected in transient drain current, respectively. Therefore, when the FinFET device with the gate length below 100 nm, the platform current will seriously affect the device performance. Second, we use TCAD to simulate the heavy ion single-event effect of FinFET device and study the generation mechanism of platform region in transient drain current. The TCAD simulation explains this mechanism. Laser or heavy ions ionize high concentration electron-hole pairs in the device. The holes are quickly collected and the high concentration electrons are left under the FinFET channel. High concentration electrons conduct source and drain, generating the source-to-drain current at the tail of the transient drain current. Moreover the source-drain conduction enhances the electrostatic potential below the FinFET channel and suppresses high-concentration electron diffusion, making source-to-drain current decrease slowly and form the platform. The transient drain current tail has a long duration and a large quantity of collected charges, which seriously affects FinFET performance. This is a problem that needs studying in the single-event effect of FinFET device. It is also a problem difficult to solve when the FinFET devices are applied to spacecraft. And the generation mechanism of the transient drain current plateau region of FinFET device can provide theoretical guidance for solving these problems.
      Corresponding author: Chen Wei, chenwei6802@163.com
    [1]

    Colinge J P 2008 FinFETs and Other Multi-Gate Transistors (New York: Springer) pp257–258

    [2]

    Herman C H J, Michiel S M, van AHM Arthur R 2011 Analog Circuit Design-Robust Design, Sigma Delta Converters, RFID (New York: Springer) pp69–87

    [3]

    Nsengiyumva P, Ball D R, Kauppila J S, Tam N, McCurdy M, Holman W T, Alles M L, Bhuva B L, Massengill L W 2016 IEEE Trans. Nucl. Sci. 63 266Google Scholar

    [4]

    Nsengiyumva P, Massengill L W, Alles M L, Bhuva B L, Ball D R, Kauppila J S, Haeffner T D, Holman W T, Reed R A 2017 IEEE Trans. Nucl. Sci. 64 441Google Scholar

    [5]

    Zhang H F, Jiang H, Assis T R, et al. 2017 IEEE Trans. Nucl. Sci. 64 457Google Scholar

    [6]

    Nsengiyumva P, Massengill L W, Kauppila J S, Maharrey J A, Harrington R C, Haeffner T D, Ball D R, Alles M L, Bhuva B L, Holman W T, Zhang E X, Rowe J D, Sternberg A L 2018 IEEE Trans. Nucl. Sci. 65 223Google Scholar

    [7]

    Narasimham B, Hatami S, Anvar A, Harris D M, Lin A, Wang J K, Chatterjee I, Ni K, Bhuva B L, Schrimpf R D, Reed R A, McCurdy M W 2015 IEEE Trans. Nucl. Sci. 62 2578Google Scholar

    [8]

    Harrington R C, Maharrey J A, Kauppila J S, Nsengiyumva P, Ball D R, Haeffner T D, Zhang E X, Bhuva B L, Massengill L W 2018 IEEE Trans. Nucl. Sci. 65 1807Google Scholar

    [9]

    Karp J, Hart M J, Maillard P, Hellings G, Linten D 2018 IEEE Trans. Nucl. Sci. 65 217Google Scholar

    [10]

    Gong H Q, Ni K, Zhang E X, Sternberg A L, Kozub J A, Ryder K L, Keller R F, Ryder L D, Weiss S M, Weller R A, Alles M L, Reed R A, Fleetwood D M, Schrimpf R D, Vardi A, Jesús A 2018 IEEE Trans. Nucl. Sci. 65 296Google Scholar

    [11]

    Gong H Q, Ni K, Zhang E X, Sternberg A L, Kozub J A, Alles M L, Reed R A, Fleetwood D M, Schrimpf R D, Waldron N, Kunert B, Linten D 2019 IEEE Trans. Nucl. Sci. 66 376Google Scholar

    [12]

    Ni K, Sternberg A L, Zhang E X, Kozub J A, Rong J, Schrimpf R D, Reed R A, Fleetwood D M, Alles M L, McMorrow D, Lin J Q, Vardi A, Jesús A 2017 IEEE Trans. Nucl. Sci. 64 2069Google Scholar

    [13]

    El-Mamouni F, Zhang E X, Pate N D, Hooten N, Schrimpf R D, Reed R A, Galloway K F, McMorrow D, Warner J, Simoen E, Claeys C, Griffoni A, Linten D, Vizkelethy G 2011 IEEE Trans. Nucl. Sci. 58 2563Google Scholar

    [14]

    El-Mamouni F, Zhang E X, Ball D R, Sierawski B, King M P, Schrimpf R D, Reed R A, Alles M L, Fleetwood D M, Linten D, Simoen E, Vizkelethy G 2012 IEEE Trans. Nucl. Sci. 59 2674Google Scholar

    [15]

    于俊庭 2017 博士学位论文 (长沙: 国防科技大学)

    Yu J T 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [16]

    Yu J T, Chen S M, Chen J J, Huang P C, Song R Q 2016 Chin. Phys. B 25 049401Google Scholar

    [17]

    Yu J T, Chen S M, Chen J J, Huang P C 2015 Chin. Phys. B 24 119401Google Scholar

    [18]

    Wu Z Y, Zhu B N, Yi T Y, Li C, Liu Y, Yang Y T 2018 J. Comput. Electron. 17 1608Google Scholar

    [19]

    Li G S, An X, Ren Z X, Wang J N, Huang R 2018 IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) Qingdao, China, Oct. 31–Nov. 3, 2018 p1

    [20]

    田恺, 曹洲, 薛玉雄, 杨世宇 2010 原子能科学技术 44 489

    Tian K, Cao Z, Xue Y X, Yang S Y 2010 At. Energ. Sci. Technol. 44 489

    [21]

    黄建国, 韩建伟 2004 中国科学G辑: 物理学 力学 天文学 34 601

    Haung J G, Han J W 2004 Science in China Series G: Physics, Mechanics & Astronomy 34 601

    [22]

    Adams J H 1983 IEEE Trans. Nucl. Sci. 30 4475Google Scholar

    [23]

    卓青青, 刘红侠, 郝跃 2012 61 218501Google Scholar

    Zhuo Q Q, Liu H X, Hao Y 2012 Acta Phys. Sin. 61 218501Google Scholar

  • 图 1  双鳍FinFET器件结构模型

    Figure 1.  The structure of two fin FinFET device.

    图 2  实验测试电路图

    Figure 2.  The circuit schematic of experience.

    图 3  4鳍不同栅长FinFET器件在5 nJ激光照射下的漏电流脉冲

    Figure 3.  Drain current transients for 4 fin FinFET of different gate length during the 5 nJ laser testing.

    图 4  4鳍不同栅长器件在5 nJ激光入射下漏端收集电荷与时间关系

    Figure 4.  Drain charge collected for 4 fin FinFET of different gate length during the 5 nJ laser testing as a function of time.

    图 5  双鳍 100和30 nm栅长器件在5 nJ激光入射下漏电流脉冲

    Figure 5.  Drain current transients for 2 fin FinFET of different gate length during the 5 nJ laser testing.

    图 6  单鳍FinFET仿真器件和2鳍、4鳍FinFET实验器件$ I_{\rm d}\text{-}V_{\rm g} $曲线

    Figure 6.  $ I_{\rm d}\text{-}V_{\rm g} $ for simulation single-fin FinFET and experimental 2 and 4 fins FinFET.

    图 7  TCAD模拟下衬底厚度为0.1和0.9 μm, 栅长为30 nm FinFET器件漏电流脉冲

    Figure 7.  Drain current transients for FinFET of different substrate thickness from TCAD simulation.

    图 8  TCAD模拟下不同栅长FinFET器件漏电流脉冲

    Figure 8.  Drain current transients for FinFET of different gate length from TCAD simulation.

    图 9  重离子产生的电荷径向分布

    Figure 9.  Charge generation radial distribution of heavy ion

    图 10  重离子入射前、入射中和入射后30 nm FinFET器件内部电子浓度和电势分布

    Figure 10.  Temporary evolution of electronic density and electrostatic potential for a 30 nm FinFET.

    图 11  不同栅长FinFET器件在1.5 ns时的电子浓度

    Figure 11.  Electronic density for FinFET of different gate length at 1.5 ns.

    图 12  30 nm器件在不同特征半径重离子入射下漏电流脉冲

    Figure 12.  Drain current transient for 30 nm FinFET when heavy ion incident device with different radius.

    图 13  当重离子从栅极和漏极入射时, FinFET器件的漏电流脉冲

    Figure 13.  Drain current transient for a FinFET when heavy ion incident at drain and gate.

    Baidu
  • [1]

    Colinge J P 2008 FinFETs and Other Multi-Gate Transistors (New York: Springer) pp257–258

    [2]

    Herman C H J, Michiel S M, van AHM Arthur R 2011 Analog Circuit Design-Robust Design, Sigma Delta Converters, RFID (New York: Springer) pp69–87

    [3]

    Nsengiyumva P, Ball D R, Kauppila J S, Tam N, McCurdy M, Holman W T, Alles M L, Bhuva B L, Massengill L W 2016 IEEE Trans. Nucl. Sci. 63 266Google Scholar

    [4]

    Nsengiyumva P, Massengill L W, Alles M L, Bhuva B L, Ball D R, Kauppila J S, Haeffner T D, Holman W T, Reed R A 2017 IEEE Trans. Nucl. Sci. 64 441Google Scholar

    [5]

    Zhang H F, Jiang H, Assis T R, et al. 2017 IEEE Trans. Nucl. Sci. 64 457Google Scholar

    [6]

    Nsengiyumva P, Massengill L W, Kauppila J S, Maharrey J A, Harrington R C, Haeffner T D, Ball D R, Alles M L, Bhuva B L, Holman W T, Zhang E X, Rowe J D, Sternberg A L 2018 IEEE Trans. Nucl. Sci. 65 223Google Scholar

    [7]

    Narasimham B, Hatami S, Anvar A, Harris D M, Lin A, Wang J K, Chatterjee I, Ni K, Bhuva B L, Schrimpf R D, Reed R A, McCurdy M W 2015 IEEE Trans. Nucl. Sci. 62 2578Google Scholar

    [8]

    Harrington R C, Maharrey J A, Kauppila J S, Nsengiyumva P, Ball D R, Haeffner T D, Zhang E X, Bhuva B L, Massengill L W 2018 IEEE Trans. Nucl. Sci. 65 1807Google Scholar

    [9]

    Karp J, Hart M J, Maillard P, Hellings G, Linten D 2018 IEEE Trans. Nucl. Sci. 65 217Google Scholar

    [10]

    Gong H Q, Ni K, Zhang E X, Sternberg A L, Kozub J A, Ryder K L, Keller R F, Ryder L D, Weiss S M, Weller R A, Alles M L, Reed R A, Fleetwood D M, Schrimpf R D, Vardi A, Jesús A 2018 IEEE Trans. Nucl. Sci. 65 296Google Scholar

    [11]

    Gong H Q, Ni K, Zhang E X, Sternberg A L, Kozub J A, Alles M L, Reed R A, Fleetwood D M, Schrimpf R D, Waldron N, Kunert B, Linten D 2019 IEEE Trans. Nucl. Sci. 66 376Google Scholar

    [12]

    Ni K, Sternberg A L, Zhang E X, Kozub J A, Rong J, Schrimpf R D, Reed R A, Fleetwood D M, Alles M L, McMorrow D, Lin J Q, Vardi A, Jesús A 2017 IEEE Trans. Nucl. Sci. 64 2069Google Scholar

    [13]

    El-Mamouni F, Zhang E X, Pate N D, Hooten N, Schrimpf R D, Reed R A, Galloway K F, McMorrow D, Warner J, Simoen E, Claeys C, Griffoni A, Linten D, Vizkelethy G 2011 IEEE Trans. Nucl. Sci. 58 2563Google Scholar

    [14]

    El-Mamouni F, Zhang E X, Ball D R, Sierawski B, King M P, Schrimpf R D, Reed R A, Alles M L, Fleetwood D M, Linten D, Simoen E, Vizkelethy G 2012 IEEE Trans. Nucl. Sci. 59 2674Google Scholar

    [15]

    于俊庭 2017 博士学位论文 (长沙: 国防科技大学)

    Yu J T 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [16]

    Yu J T, Chen S M, Chen J J, Huang P C, Song R Q 2016 Chin. Phys. B 25 049401Google Scholar

    [17]

    Yu J T, Chen S M, Chen J J, Huang P C 2015 Chin. Phys. B 24 119401Google Scholar

    [18]

    Wu Z Y, Zhu B N, Yi T Y, Li C, Liu Y, Yang Y T 2018 J. Comput. Electron. 17 1608Google Scholar

    [19]

    Li G S, An X, Ren Z X, Wang J N, Huang R 2018 IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) Qingdao, China, Oct. 31–Nov. 3, 2018 p1

    [20]

    田恺, 曹洲, 薛玉雄, 杨世宇 2010 原子能科学技术 44 489

    Tian K, Cao Z, Xue Y X, Yang S Y 2010 At. Energ. Sci. Technol. 44 489

    [21]

    黄建国, 韩建伟 2004 中国科学G辑: 物理学 力学 天文学 34 601

    Haung J G, Han J W 2004 Science in China Series G: Physics, Mechanics & Astronomy 34 601

    [22]

    Adams J H 1983 IEEE Trans. Nucl. Sci. 30 4475Google Scholar

    [23]

    卓青青, 刘红侠, 郝跃 2012 61 218501Google Scholar

    Zhuo Q Q, Liu H X, Hao Y 2012 Acta Phys. Sin. 61 218501Google Scholar

  • [1] Huang Xin-Yu, Zhang Jin-Xin, Wang Xin, Lü Ling, Guo Hong-Xia, Feng Juan, Yan Yun-Yi, Wang Hui, Qi Jun-Xiang. Numerical simulation of single-particle transients in low-noise amplifiers based on silicon-germanium heterojunction bipolar transistors and inverse-mode structures. Acta Physica Sinica, 2024, 73(12): 126103. doi: 10.7498/aps.73.20240307
    [2] He Guang-Long, Xue Li, Wu Cheng, Li Hui, Yin Rui, Dong Da-Xing, Wang Hao, Xu Chi, Huang Hui-Xin, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Xia Ling-Hao, Zhang La-Bao, Wu Pei-Heng. Miniaturized superconducting single-photon detection system for airborne platform. Acta Physica Sinica, 2023, 72(9): 098501. doi: 10.7498/aps.72.20230248
    [3] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [4] Zhao Wen, Chen Wei, Luo Yin-Hong, He Chao-Hui, Shen Chen. Relationship between ion track characteristics and single event transients in nanometer inverter chain. Acta Physica Sinica, 2021, 70(12): 126102. doi: 10.7498/aps.70.20210192
    [5] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Experimental study on neutron single event effects of commercial SRAMs based on CSNS. Acta Physica Sinica, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [6] Li Hua-Mei, Hou Peng-Fei, Wang Jin-Bin, Song Hong-Jia, Zhong Xiang-Li. Single-event-upset effect simulation of HfO2-based ferroelectric field effect transistor read and write circuits. Acta Physica Sinica, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [7] Hu Zhi-Liang, Yang Wei-Tao, Li Yong-Hong, Li Yang, He Chao-Hui, Wang Song-Lin, Zhou Bin, Yu Quan-Zhi, He Huan, Xie Fei, Bai Yu-Rong, Liang Tian-Jiao. Atmospheric neutron single event effect in 65 nm microcontroller units by using CSNS-BL09. Acta Physica Sinica, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [8] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Application and evaluation of Chinese spallation neutron source in single-event effects testing. Acta Physica Sinica, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [9] Gao Zhan-Zhan, Hou Peng-Fei, Guo Hong-Xia, Li Bo, Song Hong-Jia, Wang Jin-Bin, Zhong Xiang-Li. Temperature dependence of single-event transient response in devices with selective-buried-oxide structure. Acta Physica Sinica, 2019, 68(4): 048501. doi: 10.7498/aps.68.20191932
    [10] Chen Jian, Liu Zhi-Qiang, Guo Heng, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng. Physical characteristics of ion extraction simulation system based on gas discharge plasma jet. Acta Physica Sinica, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [11] Lü Yi, Zhang He-Ming, Hu Hui-Yong, Yang Jin-Yong, Yin Shu-Juan, Zhou Chun-Yu. A Model of channel current for uniaxially strained Si NMOSFET. Acta Physica Sinica, 2015, 64(19): 197301. doi: 10.7498/aps.64.197301
    [12] Zhao Xing, Mei Bo, Bi Jin-Shun, Zheng Zhong-Shan, Gao Lin-Chun, Zeng Chuan-Bin, Luo Jia-Jun, Yu Fang, Han Zheng-Sheng. Single event transients in a 0.18 m partially-depleted silicon-on-insulator complementary metal oxide semiconductor circuit. Acta Physica Sinica, 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [13] Bai Yu-Rong, Xu Jing-Ping, Liu Lu, Fan Min-Min, Huang Yong, Cheng Zhi-Xiang. Modeling on drain current of high-k gate dielectric fully-depleted nanoscale germanium-on-insulator p-channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2014, 63(23): 237304. doi: 10.7498/aps.63.237304
    [14] Li An-Liang, Cai Hong, Zhang She-Feng, Bai Xi-Bin. Control and modeling of suspending stabilization problom for floated inertial platform. Acta Physica Sinica, 2013, 62(15): 150203. doi: 10.7498/aps.62.150203
    [15] Bi Jin-Shun, Liu Gang, Luo Jia-Jun, Han Zheng-Sheng. Numerical simulation of single-event-transient effects on ultra-thin-body fully-depleted silicon-on-insulator transistor based on 22 nm process node. Acta Physica Sinica, 2013, 62(20): 208501. doi: 10.7498/aps.62.208501
    [16] Zhuo Qing-Qing, Liu Hong-Xia, Hao Yue. Two-dimensional numerical analysis of the collection mechanism of single event transient current in NMOSFET. Acta Physica Sinica, 2012, 61(21): 218501. doi: 10.7498/aps.61.218501
    [17] Tang Xiao-Yan, Zhang Yi-Men, Zhang Yu-Ming. The threshold voltage of SiC Schottky barrier source/drain MOSFET. Acta Physica Sinica, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [18] Li Hong, Wang Wei-Lu, Gong Pi-Feng. Spin current of a single quantum well. Acta Physica Sinica, 2007, 56(4): 2405-2408. doi: 10.7498/aps.56.2405
    [19] Guo Rong-Hui, Zhao Zheng-Ping, Hao Yue, Liu Yu-Gui, Wu Yi-Bin, Lü Miao. Realization and output characteristics analysis of the multiple islands single- electron transistors. Acta Physica Sinica, 2005, 54(4): 1804-1808. doi: 10.7498/aps.54.1804
    [20] LIU HONG-XIA, HAO YUE. STUDY ON STRESS INDEUCED LEAKAGE CURRENT TRANSIENT CHARACTERISTICS IN THIN GATE OXIDE. Acta Physica Sinica, 2001, 50(9): 1769-1773. doi: 10.7498/aps.50.1769
Metrics
  • Abstract views:  8106
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2019
  • Accepted Date:  27 January 2020
  • Published Online:  20 April 2020

/

返回文章
返回
Baidu
map