-
针对锗硅异质结双极晶体管(SiGe HBT)进行TCAD仿真建模, 基于SiGe HBT器件模型搭建低噪放大器(LNA)电路, 开展单粒子瞬态(SET)的混合仿真, 研究SET脉冲随离子不同LET值、入射角度的变化规律. 结果表明: 随着入射离子LET值的增大, LNA端口的SET脉冲的幅值增大, 振荡时间延长; 随着离子入射角的增大, LNA端口的SET脉冲的幅值先增大后减小, 振荡时间减小. 使用反模(IM)共射共基结构(Cascode)降低LNA对单粒子效应的敏感度, 验证了采用IM结构的LNA电路的相关射频性能. 针对离子于共基极(CB)晶体管、共发射极(CE)晶体管两种位置入射进行SET实验. 实验结果与本实验中的正向模式相比, IM Cascode结构的LNA电路的瞬态电流持续时间明显减少, 并且峰值减小了66%及以上.
-
关键词:
- 锗硅异质结双极晶体管 /
- 单粒子效应 /
- 反模 /
- 混合仿真
In this work, TCAD simulation modeling is carried out for silicon-germanium heterojunction bipolar transistor (SiGe HBT), and an X-band low noise amplifier (LNA) circuit is built based on the SiGe HBT device model to carry out the hybrid simulation of single-particle transient (SET). The rule of SET pulse varying with LET value and incident angle of ions is studied, and the results show that with the increase of incident LET value, the amplitude of SET pulse at the LNA port increases, and the oscillation time is prolonged; with the increase of incident angle of ions, the amplitude of SET pulse at the LNA port first increases and then decreases, and the oscillation time decreases. With the development of the characterization process, the cutoff frequency (fT) and the maximum oscillation frequency (fMAX) of SiGe HBT device with IM structure, are measured considering the use of inverse-mode (IM) common emitter and common-base structures (Cascode) to reduce the sensitivity of the LNAs to single-particle effects. This work calibrates the devices of the TCAD platform as well as the devices of the ADS platform, establishes F-F LNAs as well as I-F LNAs on the ADS, respectively, and verifies the relevant RF performances of the LNA circuits by using the IM-structured SiGe HBTs as the core devices. The SET experiments are performed on the Sentaurus TCAD platform for the F-F LNA circuit and I-F LNA circuit for ions incident on two positions: common base transistor and common emitter transistor, respectively. It is concluded that the LNA with IM structure still shows good RF performance compared with the standard LNA at 130 nm. The transient current duration of the LNA circuit with IM Cascode structure is significantly reduced, and the peak value is reduced by 66% or more, which significantly reduces the sensitivity of the SiGe LNA circuit to SET.-
Keywords:
- silicon-germanium heterojunction bipolar transistor /
- single particle effect /
- inverse mode /
- hybrid simulation
[1] 辛启明, 刘英坤, 贾素梅 2011 半导体技术 36 672Google Scholar
Xin Q M, Liu Y Q, Jia S M 2011 Semicond. Technol. 36 672Google Scholar
[2] Meyerson B S 1986 Appl. Phys. Lett. 48 797Google Scholar
[3] 马良 2019 中国新通信 21 222Google Scholar
Man L 2019 Chin. New Telecommun. 21 222Google Scholar
[4] 谢孟贤, 古妮娜 2008 微电子学 38 34
Xie M X, Gu N N 2008 Microelectronics 38 34
[5] Çaışkan C, Kalyoncu I, Yazici M, Gurbuz Y 2018 IEEE Trans. Circuits Syst. Regul. Pap. 66 1419Google Scholar
[6] 包宽, 周骏, 沈亚 2017 固体电子学研究与进展 37 239
Bao K, Zhou J, Shen Y 2017 Solid State Electron. Res. Prog. 37 239
[7] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 64 118502Google Scholar
Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502Google Scholar
[8] Appaswamy A 2009 Ph. D. Dissertation (Georgia: Georgia Institute of Technology
[9] Sheng L, Yong-Bin K, Fabrizio L 2011 IEEE Trans. Device Mater. Reliab. 12 68Google Scholar
[10] Jung S, Lourenco N E, Song I, Oakley M A, England T D, Arora R, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 3193Google Scholar
[11] Al Seragi E M, Dash S, Muthuseenu K, Cressler J D, Barnaby H J, Khachatrian A, Buchner S P, McMorrow D, Zeinolabedinzadeh S 2021 IEEE Trans. Nucl. Sci. 69 2154Google Scholar
[12] Li P, He C H, Guo H X, Zhang J X, Li Y, Wei J 2019 Microelectron. Reliab. 103 113499Google Scholar
[13] Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Wen L 2018 Microelectron. Reliab. 84 105Google Scholar
[14] Jin D Y, Wu L, Zhang W R, Na W C, Yang S M, Jia X X, Yang Y Q 2022 J. Beijing Univ. Technol. 48 1280Google Scholar
[15] Zhang J X, Guo H X, Pan X Y, Guo Q, Zhang F Q, Feng J, Wang X, Wei Y, Wu X X 2018 Chin. Phys. B 27 108501Google Scholar
[16] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉 2022 71 058502Google Scholar
Zhang J X, Wang X, Guo H X, Feng J, Lü L, Li P, Yan Y Y, Wu X X, Wang H 2022 Acta Phys. Sin. 71 058502Google Scholar
[17] Lourenco N E, Zeinolabedinzadeh S, Ildefonso A, Fleetwood Z E, Coen C T, Song I, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 273Google Scholar
[18] Chen W, Pouget V, Barnaby H J, Cressler J D, Niu G, Fouillat P, Lewis D 2003 IEEE Trans. Nucl. Sci. 50 2081Google Scholar
[19] Zeinolabedinzadeh S, Ying H, Fleetwood Z E, Roche N J H, Khachatrian A, McMorrow D, Cressler J D 2016 IEEE Trans. Nucl. Sci. 64 125Google Scholar
[20] Lourenco N E, Phillips S D, England T D, Cardoso A S, Fleetwood Z E, Moen K A, Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 4175Google Scholar
[21] Phillips S D, Moen K A, Lourenco N E, Cressler J D 2012 IEEE Trans. Nucl. Sci. 59 2682Google Scholar
[22] 李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar
Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar
[23] Najafizadeh L, Phillips S D, Moen K A, Diestelhorst R M, Bellini M, Saha P K, Marshall P W 2009 IEEE Trans. Nucl. Sci. 56 3469Google Scholar
[24] Ildefonso A, Coen C T, Fleetwood Z E, Tzintzarov G N, Wachter M T, Khachatrian A, Cressler J D 2017 IEEE Trans. Nucl. Sci. 65 239Google Scholar
[25] Song I, Raghunathan U S, Lourenco N E, Fleetwood Z E, Oakley M A, Jung S, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 1099Google Scholar
-
表 1 LNA核心参数
Table 1. LNA core parameters.
LNA核心参数 I-F Cascode F-F Cascode f0/GHz 9.5 9.5 S21/dB 20 23 NF/dB 2.9 1.4 P1dB/dBm –18 –22 -
[1] 辛启明, 刘英坤, 贾素梅 2011 半导体技术 36 672Google Scholar
Xin Q M, Liu Y Q, Jia S M 2011 Semicond. Technol. 36 672Google Scholar
[2] Meyerson B S 1986 Appl. Phys. Lett. 48 797Google Scholar
[3] 马良 2019 中国新通信 21 222Google Scholar
Man L 2019 Chin. New Telecommun. 21 222Google Scholar
[4] 谢孟贤, 古妮娜 2008 微电子学 38 34
Xie M X, Gu N N 2008 Microelectronics 38 34
[5] Çaışkan C, Kalyoncu I, Yazici M, Gurbuz Y 2018 IEEE Trans. Circuits Syst. Regul. Pap. 66 1419Google Scholar
[6] 包宽, 周骏, 沈亚 2017 固体电子学研究与进展 37 239
Bao K, Zhou J, Shen Y 2017 Solid State Electron. Res. Prog. 37 239
[7] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 64 118502Google Scholar
Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502Google Scholar
[8] Appaswamy A 2009 Ph. D. Dissertation (Georgia: Georgia Institute of Technology
[9] Sheng L, Yong-Bin K, Fabrizio L 2011 IEEE Trans. Device Mater. Reliab. 12 68Google Scholar
[10] Jung S, Lourenco N E, Song I, Oakley M A, England T D, Arora R, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 3193Google Scholar
[11] Al Seragi E M, Dash S, Muthuseenu K, Cressler J D, Barnaby H J, Khachatrian A, Buchner S P, McMorrow D, Zeinolabedinzadeh S 2021 IEEE Trans. Nucl. Sci. 69 2154Google Scholar
[12] Li P, He C H, Guo H X, Zhang J X, Li Y, Wei J 2019 Microelectron. Reliab. 103 113499Google Scholar
[13] Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Wen L 2018 Microelectron. Reliab. 84 105Google Scholar
[14] Jin D Y, Wu L, Zhang W R, Na W C, Yang S M, Jia X X, Yang Y Q 2022 J. Beijing Univ. Technol. 48 1280Google Scholar
[15] Zhang J X, Guo H X, Pan X Y, Guo Q, Zhang F Q, Feng J, Wang X, Wei Y, Wu X X 2018 Chin. Phys. B 27 108501Google Scholar
[16] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉 2022 71 058502Google Scholar
Zhang J X, Wang X, Guo H X, Feng J, Lü L, Li P, Yan Y Y, Wu X X, Wang H 2022 Acta Phys. Sin. 71 058502Google Scholar
[17] Lourenco N E, Zeinolabedinzadeh S, Ildefonso A, Fleetwood Z E, Coen C T, Song I, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 273Google Scholar
[18] Chen W, Pouget V, Barnaby H J, Cressler J D, Niu G, Fouillat P, Lewis D 2003 IEEE Trans. Nucl. Sci. 50 2081Google Scholar
[19] Zeinolabedinzadeh S, Ying H, Fleetwood Z E, Roche N J H, Khachatrian A, McMorrow D, Cressler J D 2016 IEEE Trans. Nucl. Sci. 64 125Google Scholar
[20] Lourenco N E, Phillips S D, England T D, Cardoso A S, Fleetwood Z E, Moen K A, Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 4175Google Scholar
[21] Phillips S D, Moen K A, Lourenco N E, Cressler J D 2012 IEEE Trans. Nucl. Sci. 59 2682Google Scholar
[22] 李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar
Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar
[23] Najafizadeh L, Phillips S D, Moen K A, Diestelhorst R M, Bellini M, Saha P K, Marshall P W 2009 IEEE Trans. Nucl. Sci. 56 3469Google Scholar
[24] Ildefonso A, Coen C T, Fleetwood Z E, Tzintzarov G N, Wachter M T, Khachatrian A, Cressler J D 2017 IEEE Trans. Nucl. Sci. 65 239Google Scholar
[25] Song I, Raghunathan U S, Lourenco N E, Fleetwood Z E, Oakley M A, Jung S, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 1099Google Scholar
计量
- 文章访问数: 1582
- PDF下载量: 75
- 被引次数: 0