Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Raman thermometry based thermal resistance analysis of GaN high electron mobility transistors with copper-based composite flanges

Liu Kang Sun Hua-Rui

Citation:

Raman thermometry based thermal resistance analysis of GaN high electron mobility transistors with copper-based composite flanges

Liu Kang, Sun Hua-Rui
PDF
HTML
Get Citation
  • The electrical performance and the long-term reliability of GaN-based high electron mobility transistors (HEMTs) are greatly affected by the Joule self-heating effect under high power density operation condition. Measurement of the junction temperature and analysis of the thermal resistance of the constituent layers including the packaging material are critically important for thermal design and reliability assessment of GaN-based HEMTs. In this paper, Raman thermometry combined with the finite element thermal simulation is used to compare the junction temperature and the thermal resistance of a GaN HEMT mounted on a novel Cu/graphite composite flange with those of a conventional CuMo flanged device. The results show that the junction temperature of the Cu/graphite flanged device is 15% lower than that of the CuMo flanged device at a power dissipation of 1.43 W/mm, while the overall device thermal resistance is 18.7% lower in the Cu/graphite flanged device. In addition, the temperature distributions of each layer along the cross-plane direction are analyzed for the two devices; the thermal resistance ratio of the Cu/graphite flange is 40% of the overall device thermal resistance, while the CuMo flange account for 53% of the overall thermal resistance of the device. This proves the effectiveness and benefit of using the Cu/graphite composite material package of high thermal conductivity to improve the heat dissipation of GaN HEMTs. By tuning the mass fraction of the graphite, it is possible to further increase the thermal conductivity of the Cu/graphite composite flange and to further reduce the device thermal resistance. It is observed in the Raman thermal measurement that the highest thermal resistance after flanging is the interfacial thermal resistance between the GaN epitaxial layer and the SiC substrate (~50 m2·K/GW). For obtaining the better thermal characteristics of the GaN HEMT, it is crucial to reduce the GaN/SiC interfacial thermal resistance through interface engineering during the epitaxial growth. In the meantime, Raman thermometry combined with the finite element thermal simulation is demonstrated to be an effective method for implementing the thermal characterization of the GaN-based devices and the constituent material layers, and the principle and procedure of the method are described in detail in the paper.
      Corresponding author: Sun Hua-Rui, huarui.sun@hit.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61604049), the Shenzhen Overseas High-Caliber Personnel Technology Innovation Project, China (Grant No. KQJSCX20170726104440871), and the Startup Funding of Shenzhen, China
    [1]

    Huang H, Sun Z, Cao Y, Li F, Zhang F, Wen Z, Hu L 2018 J. Phys. D: Appl. Phys. 51 345102Google Scholar

    [2]

    Huang H, Li F, Sun Z, Cao Y 2018 Micromachines 9 658Google Scholar

    [3]

    Bagnall K R, Saadat O I, Joglekar S, Palacios T, Wang E N 2017 IEEE Trans. Electron Devices. 64 2121Google Scholar

    [4]

    Chen K J, Häberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y 2017 IEEE Trans. Electron Devices. 64 779Google Scholar

    [5]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [6]

    唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 67 198501Google Scholar

    Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar

    [7]

    Wu Y F, Moore M, Saxler A, Wisleder T, Parikh P 2006 64th Device Research Conference IEEE State College, PA, USA, June 26–28, 2006 p151

    [8]

    Zhou Y, Anaya J, Pomeroy J, Sun H, Gu X, Xie A, Kuball M 2017 ACS Appl. Mater. Interfaces 9 34416Google Scholar

    [9]

    Sun H R, Pomeroy J W, Simon R B, Francis D, Faili F, Twitchen D J, Kuball M 2016 IEEE Electron Device Lett. 37 621Google Scholar

    [10]

    Won Y, Cho J, Agonafer D, Asheghi M, Goodson K E 2015 IEEE Trans. Compon., Packag., Manuf. Technol. 5 737Google Scholar

    [11]

    Sun H R, Simon R B, Pomeroy J W, Francis D, Faili F, Twitchen D J, Kuball M 2015 Appl. Phys. Lett. 106 111906Google Scholar

    [12]

    Yan Z, Liu G, Khan J M, Balandin A A 2012 Nat. Commun. 3 827Google Scholar

    [13]

    Ma Z H, Cao H C, Lin S, Li X D, Zhao L X 2019 Solid-State Electron. 156 92Google Scholar

    [14]

    Manoi A, Pomeroy J W, Killat N, Kuball M 2010 IEEE Electron Device Lett. 31 1395Google Scholar

    [15]

    张昊明, 何新波, 沈晓宇, 刘谦, 曲选辉 2012 粉末冶金材料科学与工程 17 339Google Scholar

    Zhang Y M, He X B, Shen X Y, Liu Q, Qu X H 2012 Mater. Sci. Eng. Powder. Metall. 17 339Google Scholar

    [16]

    许尧, 薛鹏举, 魏青松, 史玉生 2013 热加工工艺 42 111

    Xu Y, Xue P J, Wei Q S, Shi Y S 2013 Hot Working Technol. 42 111 (in Chinese)

    [17]

    Fu J J, Zhao L X, Cao H C, Sun X J, Sun B J, Wang J X, Li J M 2016 AIP Adv. 6 055219Google Scholar

    [18]

    Kuball M, Pomeroy J W 2016 IEEE Trans. Device Mater. Reliab. 16 667Google Scholar

    [19]

    Pomeroy J W, Bernardoni M, Dumka D C, Fanning D M, Kuball M 2014 Appl. Phys. Lett. 104 083513Google Scholar

    [20]

    Anaya J, Rossi S, Alomari M, Kohn E, Tóth L, Pécz B, Kuball M 2015 Appl. Phys. Lett. 106 223101Google Scholar

    [21]

    Pomeroy J W, Middleton C, Singh M, Dalcanale S, Uren M J, Wong M H, Kuball M 2018 IEEE Electron Device Lett. 40 189

    [22]

    Sarua A, Ji H, Kuball M, Uren M J, Martin T, Hilton K P, Balmer R S 2006 IEEE Trans. Electron Devices. 53 2438Google Scholar

    [23]

    Wang A, Tadjer M J, Calle F 2013 Semicond. Sci. Technol. 28 055010Google Scholar

    [24]

    Guo H, Kong Y, Chen T 2017 Diamond Relat. Mater. 73 260Google Scholar

    [25]

    Zou B, Sun H R, Guo H X, Dai B, Zhu J Q 2019 Diamond Relat. Mater. 95 28Google Scholar

    [26]

    Riedel G J, Pomeroy J W, Hilton K P, Maclean J O, Wallis D J, Uren M J, Pozina G 2008 IEEE Electron Device Lett. 30 103

    [27]

    Liu K, Zhao J W, Sun H R, Guo H X, Dai B, Zhu J Q 2019 Chin. Phys. B 28 060701Google Scholar

  • 图 1  (a)被测GaN高电子迁移率场效应管器件结构以及拉曼热测量的示意图; (b)被测器件在50 ℃和300 ℃的拉曼特征峰: 包括GaN外延的E2(high)和A1(LO)峰, 以及SiC衬底的FTO峰

    Figure 1.  (a) Schematic structure of the GaN-on-SiC HEMT under test in the Raman optothermal measurement; (b) Raman peaks of the GaN-on-SiC HEMT at 50 ℃ and 300 ℃, including the E2(high) and A1(LO) peaks of the GaN epitaxy and the FTO peak of the SiC substrate.

    图 2  (a) GaN A1(LO)拉曼峰随温度的变化关系, 线性拟合得到的温度系数为–0.026 cm–1·K–1; (b) SiC FTO拉曼峰随温度的变化关系, 线性拟合得到的温度系数为–0.023 cm–1·K–1

    Figure 2.  (a) Position of the GaN A1(LO) Raman peak as a function of temperature. The temperature coefficient from the linear fit is –0.026 cm–1·K–1; (b) position of the SiC FTO Raman peak as a function of temperature. The temperature coefficient from the linear fit is –0.023 cm–1·K–1.

    图 3  (a) GaN A1(LO)拉曼峰随器件功率密度的变化关系, 线性拟合得到的功率系数为–1.86 cm–1·mm/W; (b) SiC FTO拉曼峰随器件功率密度的变化关系, 线性拟合得到的功率系数为–1.25 cm–1·mm/W的功率系数

    Figure 3.  (a) Position of the GaN A1(LO) Raman peak as a function of the device power density. The power density coefficient from the linear fit is –1.86 cm–1·mm/W; (b) position of the SiC FTO Raman peak as a function of the device power density. The power density coefficient from the linear fit is –1.25 cm–1·mm/W.

    图 4  (a)铜/石墨法兰封装器件GaN层、SiC上表层和封装法兰的温度随功率密度的变化; (b)铜/石墨法兰封装器件GaN层和SiC上表层的温度差、GaN层和封装法兰之间的温度差随功率密度的变化; (c)铜钼法兰封装器件GaN层、SiC上表层和封装法兰的温度随功率密度的变化; (d)铜钼法兰封装器件GaN层和SiC上表层的温度差、GaN层和封装法兰之间的温度差随功率密度增加的变化

    Figure 4.  (a) Measured temperature of GaN, SiC, and the Cu/graphite flange as a function of the device power density; (b) temperature differences between GaN and SiC, and between GaN and and the Cu/graphite flange as a function of the device power density; (c) measured temperature of GaN, SiC, and the CuMo flange as a function of the device power density; (b) temperature differences between GaN and SiC, and between GaN and and the CuMo flange as a function of the device power density.

    图 5  (a)铜/石墨法兰封装的GaN器件的GaN外延和SiC衬底上表层温度的模拟值(线)和实测值(点); (b)铜钼法兰GaN电子器件的结温和SiC衬底上表层温度的模拟值和实测值的对比; (c) 1.43 W/mm功率密度下铜/石墨法兰和铜钼法兰封装GaN器件在垂直器件表面方向上的温度分布; (d)铜/石墨法兰和铜钼法兰封装GaN器件各层材的热阻占比(其中TBR的材料为AlN)

    Figure 5.  (a) Simulated (line) and measured (dot) junction temperatures of the Cu/graphite flanged device; (b) simulated (line) and measured (dot) junction temperatures of the CuMo flanged device; (c) depth wise temperature distribution of the Cu/graphite flanged device and the CuMo flanged device at the power density of 1.43 W/mm; (d) thermal resistance of each layer within the Cu/graphite flanged device and the CuMo flanged device (The material of TBR is AlN).

    表 1  两种铜基法兰封装GaN器件的热阻对比

    Table 1.  Thermal resistance of GaN HEMT with different Cu-based flange materials.

    GaN场效应管法兰封装材料热导率/W·(m·K)–1GaN-SiC间热阻/mm·K·W–1器件整体热阻/mm·K·W–1
    铜/石墨30014.742.9
    铜钼16714.452.8
    DownLoad: CSV

    表 2  有限元热仿真分析中使用的各层材料的尺寸及热导率

    Table 2.  Dimensions and thermal conductivity of each layer in the GaN-on-SiC HEMT used in the finite element device thermal simulation.

    材料厚度/μm热导率/ W·(m·K) –1
    AlGaN/GaN1.2160 × (T/300)–1.42[23]
    AlN0.02拟合提取出等效界面热阻约为50 m2·K/GW
    SiC100400 × (T/300)–1[23]
    AuSn1257[24]
    铜钼1000167[24]
    铜/石墨1000300
    DownLoad: CSV
    Baidu
  • [1]

    Huang H, Sun Z, Cao Y, Li F, Zhang F, Wen Z, Hu L 2018 J. Phys. D: Appl. Phys. 51 345102Google Scholar

    [2]

    Huang H, Li F, Sun Z, Cao Y 2018 Micromachines 9 658Google Scholar

    [3]

    Bagnall K R, Saadat O I, Joglekar S, Palacios T, Wang E N 2017 IEEE Trans. Electron Devices. 64 2121Google Scholar

    [4]

    Chen K J, Häberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y 2017 IEEE Trans. Electron Devices. 64 779Google Scholar

    [5]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [6]

    唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 67 198501Google Scholar

    Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar

    [7]

    Wu Y F, Moore M, Saxler A, Wisleder T, Parikh P 2006 64th Device Research Conference IEEE State College, PA, USA, June 26–28, 2006 p151

    [8]

    Zhou Y, Anaya J, Pomeroy J, Sun H, Gu X, Xie A, Kuball M 2017 ACS Appl. Mater. Interfaces 9 34416Google Scholar

    [9]

    Sun H R, Pomeroy J W, Simon R B, Francis D, Faili F, Twitchen D J, Kuball M 2016 IEEE Electron Device Lett. 37 621Google Scholar

    [10]

    Won Y, Cho J, Agonafer D, Asheghi M, Goodson K E 2015 IEEE Trans. Compon., Packag., Manuf. Technol. 5 737Google Scholar

    [11]

    Sun H R, Simon R B, Pomeroy J W, Francis D, Faili F, Twitchen D J, Kuball M 2015 Appl. Phys. Lett. 106 111906Google Scholar

    [12]

    Yan Z, Liu G, Khan J M, Balandin A A 2012 Nat. Commun. 3 827Google Scholar

    [13]

    Ma Z H, Cao H C, Lin S, Li X D, Zhao L X 2019 Solid-State Electron. 156 92Google Scholar

    [14]

    Manoi A, Pomeroy J W, Killat N, Kuball M 2010 IEEE Electron Device Lett. 31 1395Google Scholar

    [15]

    张昊明, 何新波, 沈晓宇, 刘谦, 曲选辉 2012 粉末冶金材料科学与工程 17 339Google Scholar

    Zhang Y M, He X B, Shen X Y, Liu Q, Qu X H 2012 Mater. Sci. Eng. Powder. Metall. 17 339Google Scholar

    [16]

    许尧, 薛鹏举, 魏青松, 史玉生 2013 热加工工艺 42 111

    Xu Y, Xue P J, Wei Q S, Shi Y S 2013 Hot Working Technol. 42 111 (in Chinese)

    [17]

    Fu J J, Zhao L X, Cao H C, Sun X J, Sun B J, Wang J X, Li J M 2016 AIP Adv. 6 055219Google Scholar

    [18]

    Kuball M, Pomeroy J W 2016 IEEE Trans. Device Mater. Reliab. 16 667Google Scholar

    [19]

    Pomeroy J W, Bernardoni M, Dumka D C, Fanning D M, Kuball M 2014 Appl. Phys. Lett. 104 083513Google Scholar

    [20]

    Anaya J, Rossi S, Alomari M, Kohn E, Tóth L, Pécz B, Kuball M 2015 Appl. Phys. Lett. 106 223101Google Scholar

    [21]

    Pomeroy J W, Middleton C, Singh M, Dalcanale S, Uren M J, Wong M H, Kuball M 2018 IEEE Electron Device Lett. 40 189

    [22]

    Sarua A, Ji H, Kuball M, Uren M J, Martin T, Hilton K P, Balmer R S 2006 IEEE Trans. Electron Devices. 53 2438Google Scholar

    [23]

    Wang A, Tadjer M J, Calle F 2013 Semicond. Sci. Technol. 28 055010Google Scholar

    [24]

    Guo H, Kong Y, Chen T 2017 Diamond Relat. Mater. 73 260Google Scholar

    [25]

    Zou B, Sun H R, Guo H X, Dai B, Zhu J Q 2019 Diamond Relat. Mater. 95 28Google Scholar

    [26]

    Riedel G J, Pomeroy J W, Hilton K P, Maclean J O, Wallis D J, Uren M J, Pozina G 2008 IEEE Electron Device Lett. 30 103

    [27]

    Liu K, Zhao J W, Sun H R, Guo H X, Dai B, Zhu J Q 2019 Chin. Phys. B 28 060701Google Scholar

  • [1] Lü Ling, Xing Mu-Han, Xue Bo-Rui, Cao Yan-Rong, Hu Pei-Pei, Zheng Xue-Feng, Ma Xiao-Hua, Hao Yue. Effect of heavy ion radiation on low frequency noise characteristics of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] Jiang Fu-Chun, Liu Rui-You, Peng Dong-Sheng, Liu Wen, Chai Guang-Yue, Li Bai-Kui, Wu Hong-Lei. Steady-state thermal resistance measurement of light-emitting diodes based on spectroscopic method. Acta Physica Sinica, 2021, 70(9): 098501. doi: 10.7498/aps.70.20201093
    [3] Liu Nai-Zhang, Yao Ruo-He, Geng Kui-Wei. Gate capacitance model of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [4] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [5] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [6] Wang Kai, Xing Yan-Hui, Han Jun, Zhao Kang-Kang, Guo Li-Jian, Yu Bao-Ning, Deng Xu-Guang, Fan Ya-Ming, Zhang Bao-Shun. Growths of Fe-doped GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [7] Guo Chun-Sheng, Li Shi-Wei, Ren Yun-Xiang, Gao Li, Feng Shi-Wei, Zhu Hui. Influence of power dissipation and case temperature on thermal resistance of AlGaN/GaN high-speed electron mobility transistor. Acta Physica Sinica, 2016, 65(7): 077201. doi: 10.7498/aps.65.077201
    [8] Yang Ai-Bo, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Comparative study on constructal optimizations of rectangular fins heat sink based on entransy dissipation rate minimization and maximum thermal resistance minimization. Acta Physica Sinica, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [9] Gu Wen-Ping, Zhang Lin, Li Qing-Hua, Qiu Yan-Zhang, Hao Yue, Quan Si, Liu Pan-Zhi. Effect of neutron irradiation on the electrical properties of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [10] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [11] Chen Hai-Peng, Cao Jun-Sheng, Guo Shu-Xu. Temperature-dependent relation between junction temperature and 1/f noise in high power semiconductor laser. Acta Physica Sinica, 2013, 62(10): 104209. doi: 10.7498/aps.62.104209
    [12] Lü Ling, Zhang Jin-Cheng, Li Liang, Ma Xiao-Hua, Cao Yan-Rong, Hao Yue. Effects of 3 MeV proton irradiations on AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [13] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [14] Zhang Jin-Cheng, Mao Wei, Liu Hong-Xia, Wang Chong, Zhang Jin-Feng, Hao Yue, Yang Lin-An, Xu Sheng-Rui, Bi Zhi-Wei, Zhou Zhou, Yang Ling, Wang Hao, Yang Cui, Ma Xiao-Hua. Study on the suppression mechanism of current collapse with field-plates in GaN high-electron mobility transistors. Acta Physica Sinica, 2011, 60(1): 017205. doi: 10.7498/aps.60.017205
    [15] Gu Jiang, Wang Qiang, Lu Hong. Current collapse effect, interfacial thermal resistance and work temperature for AlGaN/GaN HEMTs. Acta Physica Sinica, 2011, 60(7): 077107. doi: 10.7498/aps.60.077107
    [16] Wang Chong, Quan Si, Ma Xiao-Hua, Hao Yue, Zhang Jin-Cheng, Mao Wei. High temperature annealing of enhancement-mode AlGaN/GaN high-electron-mobility transistors. Acta Physica Sinica, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [17] Han Yong, Liu Yan-Wen, Ding Yao-Gen, Liu Pu-Kun. Study on the thermal interface resistance of the helix slow-wave structure. Acta Physica Sinica, 2009, 58(3): 1806-1811. doi: 10.7498/aps.58.1806
    [18] Liu Xiong-Bin, Guo Zeng-Yuan. A novel method for heat exchanger analysis. Acta Physica Sinica, 2009, 58(7): 4766-4771. doi: 10.7498/aps.58.4766
    [19] Wei Wei, Hao Yue, Feng Qian, Zhang Jin-Cheng, Zhang Jin-Feng. Geometrical optimization of AlGaN/GaN field-plate high electron mobility transistor. Acta Physica Sinica, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [20] Lin Ruo-Bing, Wang Xin-Juan, Feng Qian, Wang Chong, Zhang Jin-Cheng, Hao Yue. Study on mechanism of AlGaN/GaN high electron mobility transistors by high temperature Schottky annealing. Acta Physica Sinica, 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
Metrics
  • Abstract views:  8853
  • PDF Downloads:  136
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2019
  • Accepted Date:  29 October 2019
  • Available Online:  01 January 2020
  • Published Online:  20 January 2020

/

返回文章
返回
Baidu
map