Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse

Liu Yang Chai Chang-Chun Yu Xin-Hai Fan Qing-Yang Yang Yin-Tang Xi Xiao-Wen Liu Sheng-Bei

Citation:

Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse

Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As electromagnetic environment of semiconductor device and integrated circuit deteriorates increasingly, electromagnetic pulse (EMP) of device and damage phenomenon have received more and more attention. In this paper, the damage effect and mechanism of the GaN high electron mobility field effect transistor(HEMT) under EMP are investigated. A two-dimensional electro-thermal theoretical model of GaN HEMT under EMP is proposed, which includes GaN polarization effect, mobility degradation in large electric field, avalanche generation effect, and self-heating effect. The internal transient response of AlGaN/ GaN HEMT is analyzed under the EMP injected into the gate electrode, and the damage mechanism is studied. The results show that the temperature of device keeps increasing, and the rate is divided into three stages, which present a tendency of rapid-slow-sharp till burn-out. The first rapid increasing of temperature is caused by the avalanche breakdown, and then rate becomes smaller due to the decrease of electric field. As the temperature is more than 2000 K, a positive feedback is formed between the hot electron emission and temperature of device, which causes temperature to sharply increase till burn-out. The maximum values of electric field and current density are located at the cylinder surface beneath the gate around the source, which is damage prone because of heat accumulation. Finally, the dependences of the EMP damage power, P, and the absorbed energy, E, on pulse width are obtained in a nanosecond range by adopting the data analysis software. It is demonstrated that the damage power threshold decreases but the energy threshold increases slightly with the increasing of pulse-width. The proposed formulas P = 38-0.052 and E = 1.1 0.062 can estimate the HPM pulse-width dependent damage power threshold and energy threshold of AlGaN/GaN HEMT, which can provide a good prediction of device damage and a guiding significance for electromagnetic pulse resistance destruction.
      Corresponding author: Liu Yang, lliu_yang@163.com
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (Grant No. 2015-0214.XY.K).
    [1]

    Radasky W A, Baum C E, Wik M W 2004 IEEE Trans. Electromagn. Compat. 46 314

    [2]

    Wunsch D C, Bell R R 1968 IEEE Trans. Nucl. Sci. 15 244

    [3]

    Kyechong K, Iliadis A A 2007 IEEE Trans. Electromagn. Compat. 49 329

    [4]

    Kim K, Iliadis A A 2008 Solid-State Electron. 52 1589

    [5]

    Kyechong K, Iliadis A A 2010 Solid-State Electron. 54 18

    [6]

    Kyechong K, Iliadis A A 2007 IEEE Trans. Electromagn. Compat. 49 876

    [7]

    Chahine I, Kadi M, Gaboriaud E, Louis A, Mazari B 2008 IEEE Trans. Electromagn. Compat. 50 285

    [8]

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Song K, Zhao Y B 2012 Chin. Phys. B 21 098502

    [9]

    ]Ma Z Y, Chai C C, Ren X R, Yang Y T, Zhao Y B, Qiao L P 2013 Chin. Phys. B 22 028502

    [10]

    Xi X W, Chai C C, Ren X R, Yang Y T, Ma Z Y, Wang J 2010 J. Semicond. 31 074009

    [11]

    Chai C C, Xi X W, Ren X R, Yang Y T, Ma Z Y 2010 Acta Phys. Sin. 59 8118 (in Chinese) [柴常春, 席晓文, 任兴荣, 杨银堂, 马振洋 2010 59 8118]

    [12]

    Ren X R, Chai C C, Ma Z Y, Yang Y T, Qiao L P, Shi C L 2013 Acta Phys. Sin. 62 068501 (in Chinese) [任兴荣, 柴常春, 马振洋, 杨银堂, 乔丽萍, 史春蕾 2013 62 068501]

    [13]

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B 2012 Acta Phys. Sin. 61 078501 (in Chinese) [马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌 2012 61 078501]

    [14]

    Yu X H, Chai C C, Liu Y, Yang Y T 2015 Sci. China- Inf. Sci. 58 082402

    [15]

    Yu X H, Chai C C, Ren X R, Yang Y T, Xi X W, Liu Y 2014 J. Semicond. 35 084011

    [16]

    Yu X H, Chai C C, Liu Y, Yang Y T, Fan Q Y 2015 Microelectron. Reliab. 55 1174

    [17]

    Yu X H, Chai C C, Liu Y, Yang Y T, Xi X W 2015 Chin. Phys. B 24 048502

    [18]

    Ren X R, Chai C C, Ma Z Y, Yang Y T, Qiao L P, Shi C L, Ren L H 2013 J. Semicond. 34 044004

    [19]

    Porowski S 1997 Mater. Sci. Eng. B 44 407

    [20]

    Tang Z K, Huang S, Tang X, Li B K, Chen K J 2014 IEEE Trans. Electron Dev. 61 2785

    [21]

    Synopsys. Sentaurus device user guide: 2013 345-346

    [22]

    Tasca D M 1970 IEEE Trans. Nucl. Sci. 17 364

    [23]

    Brown W D 1972 IEEE Trans. Nucl. Sci. 19 68

    [24]

    Jenkins C R, Durgin D L 1975 IEEE Trans. Nucl. Sci. 22 2494

  • [1]

    Radasky W A, Baum C E, Wik M W 2004 IEEE Trans. Electromagn. Compat. 46 314

    [2]

    Wunsch D C, Bell R R 1968 IEEE Trans. Nucl. Sci. 15 244

    [3]

    Kyechong K, Iliadis A A 2007 IEEE Trans. Electromagn. Compat. 49 329

    [4]

    Kim K, Iliadis A A 2008 Solid-State Electron. 52 1589

    [5]

    Kyechong K, Iliadis A A 2010 Solid-State Electron. 54 18

    [6]

    Kyechong K, Iliadis A A 2007 IEEE Trans. Electromagn. Compat. 49 876

    [7]

    Chahine I, Kadi M, Gaboriaud E, Louis A, Mazari B 2008 IEEE Trans. Electromagn. Compat. 50 285

    [8]

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Song K, Zhao Y B 2012 Chin. Phys. B 21 098502

    [9]

    ]Ma Z Y, Chai C C, Ren X R, Yang Y T, Zhao Y B, Qiao L P 2013 Chin. Phys. B 22 028502

    [10]

    Xi X W, Chai C C, Ren X R, Yang Y T, Ma Z Y, Wang J 2010 J. Semicond. 31 074009

    [11]

    Chai C C, Xi X W, Ren X R, Yang Y T, Ma Z Y 2010 Acta Phys. Sin. 59 8118 (in Chinese) [柴常春, 席晓文, 任兴荣, 杨银堂, 马振洋 2010 59 8118]

    [12]

    Ren X R, Chai C C, Ma Z Y, Yang Y T, Qiao L P, Shi C L 2013 Acta Phys. Sin. 62 068501 (in Chinese) [任兴荣, 柴常春, 马振洋, 杨银堂, 乔丽萍, 史春蕾 2013 62 068501]

    [13]

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B 2012 Acta Phys. Sin. 61 078501 (in Chinese) [马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌 2012 61 078501]

    [14]

    Yu X H, Chai C C, Liu Y, Yang Y T 2015 Sci. China- Inf. Sci. 58 082402

    [15]

    Yu X H, Chai C C, Ren X R, Yang Y T, Xi X W, Liu Y 2014 J. Semicond. 35 084011

    [16]

    Yu X H, Chai C C, Liu Y, Yang Y T, Fan Q Y 2015 Microelectron. Reliab. 55 1174

    [17]

    Yu X H, Chai C C, Liu Y, Yang Y T, Xi X W 2015 Chin. Phys. B 24 048502

    [18]

    Ren X R, Chai C C, Ma Z Y, Yang Y T, Qiao L P, Shi C L, Ren L H 2013 J. Semicond. 34 044004

    [19]

    Porowski S 1997 Mater. Sci. Eng. B 44 407

    [20]

    Tang Z K, Huang S, Tang X, Li B K, Chen K J 2014 IEEE Trans. Electron Dev. 61 2785

    [21]

    Synopsys. Sentaurus device user guide: 2013 345-346

    [22]

    Tasca D M 1970 IEEE Trans. Nucl. Sci. 17 364

    [23]

    Brown W D 1972 IEEE Trans. Nucl. Sci. 19 68

    [24]

    Jenkins C R, Durgin D L 1975 IEEE Trans. Nucl. Sci. 22 2494

  • [1] Lü Ling, Xing Mu-Han, Xue Bo-Rui, Cao Yan-Rong, Hu Pei-Pei, Zheng Xue-Feng, Ma Xiao-Hua, Hao Yue. Effect of heavy ion radiation on low frequency noise characteristics of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] Liu Nai-Zhang, Yao Ruo-He, Geng Kui-Wei. Gate capacitance model of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [3] Dong Shi-Jian, Guo Hong-Xia, Ma Wu-Ying, Lv Ling, Pan Xiao-Yu, Lei Zhi-Feng, Yue Shao-Zhong, Hao Rui-Jing, Ju An-An, Zhong Xiang-Li, Ouyang Xiao-Ping. Ionizing radiation damage mechanism and biases correlation of AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [4] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [5] Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao. Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure. Acta Physica Sinica, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [6] Liu Yan-Li, Wang Wei, Dong Yan, Chen Dun-Jun, Zhang Rong, Zheng You-Dou. Effect of structure parameters on performance of N-polar GaN/InAlN high electron mobility transistor. Acta Physica Sinica, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [7] Zhou Xing-Ye, Lv Yuan-Jie, Tan Xin, Wang Yuan-Gang, Song Xu-Bo, He Ze-Zhao, Zhang Zhi-Rong, Liu Qing-Bin, Han Ting-Ting, Fang Yu-Long, Feng Zhi-Hong. Mechanisms of trapping effects in short-gate GaN-based high electron mobility transistors with pulsed I-V measurement. Acta Physica Sinica, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [8] Li Zhi-Peng, Li Jing, Sun Jing, Liu Yang, Fang Jin-Yong. High power microwave damage mechanism on high electron mobility transistor. Acta Physica Sinica, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [9] Chen Hao-Ran, Yang Lin-An, Zhu Zhang-Ming, Lin Zhi-Yu, Zhang Jin-Cheng. Theoretical study on degradation phenomenon on AlGaN/GaN resonant tunneling diode. Acta Physica Sinica, 2013, 62(21): 217301. doi: 10.7498/aps.62.217301
    [10] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [11] Ren Xing-Rong, Chai Chang-Chun, Ma Zhen-Yang, Yang Yin-Tang, Qiao Li-Ping, Shi Chun-Lei. The damage effect and mechanism of bipolar transistors induced by injection of electromagnetic pulse from the base. Acta Physica Sinica, 2013, 62(6): 068501. doi: 10.7498/aps.62.068501
    [12] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [13] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Gao Pin, Wang Xiao-Hui, Xu Yuan. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [14] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Wang Xiao-Hui, Li Biao, Xu Yuan. Photoemission mechanism of GaN vacuum surface electron source. Acta Physica Sinica, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [15] Wang Chong, Quan Si, Ma Xiao-Hua, Hao Yue, Zhang Jin-Cheng, Mao Wei. High temperature annealing of enhancement-mode AlGaN/GaN high-electron-mobility transistors. Acta Physica Sinica, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [16] Xue Zheng-Qun, Huang Sheng-Rong, Zhang Bao-Ping, Chen Chao. Analysis of failure mechanism of GaN-based white light-emitting diode. Acta Physica Sinica, 2010, 59(7): 5002-5009. doi: 10.7498/aps.59.5002
    [17] Chai Chang-Chun, Xi Xiao-Wen, Ren Xing-Rong, Yang Yin-Tang, Ma Zhen-Yang. The damage effect and mechanism of the bipolar transistor induced by the intense electromagnetic pulse. Acta Physica Sinica, 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [18] Qiao Jian-Liang, Tian Si, Chang Ben-Kang, Du Xiao-Qing, Gao Pin. Activation mechanism of negative electron affinity GaN photocathode. Acta Physica Sinica, 2009, 58(8): 5847-5851. doi: 10.7498/aps.58.5847
    [19] Meng Kang, Jiang Sen-Lin, Hou Li-Na, Li Chan, Wang Kun, Ding Zhi-Bo, Yao Shu-De. Study of radiation damage in Mg+-implanted GaN. Acta Physica Sinica, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [20] Wan Wei, Tang Chun-Yan, Wang Yu-Mei, Li Fang-Hua. A study on the stacking fault in GaN crystals by high-resolution electron microscope imaging. Acta Physica Sinica, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
Metrics
  • Abstract views:  8176
  • PDF Downloads:  307
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2015
  • Accepted Date:  10 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map