搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究

王凯 邢艳辉 韩军 赵康康 郭立建 于保宁 邓旭光 范亚明 张宝顺

引用本文:
Citation:

掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究

王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺

Growths of Fe-doped GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices

Wang Kai, Xing Yan-Hui, Han Jun, Zhao Kang-Kang, Guo Li-Jian, Yu Bao-Ning, Deng Xu-Guang, Fan Ya-Ming, Zhang Bao-Shun
PDF
导出引用
  • 利用金属有机物化学气相沉积技术在蓝宝石衬底上制备了掺Fe高阻GaN以及AlGaN/GaN 高电子迁移率晶体管(HEMT)结构. 对Cp2Fe流量不同的高阻GaN特性进行了研究. 研究结果表明, Fe杂质在GaN 材料中引入的Fe3+/2+深受主能级能够补偿背景载流子浓度从而实现高阻, Fe 杂质在GaN 材料中引入更多起受主作用的刃位错, 也在一定程度上补偿了背景载流子浓度. 在一定范围内, GaN 材料方块电阻随Cp2Fe流量增加而增加, Cp2Fe流量为100 sccm时, 方块电阻增加不再明显; 另外增加Cp2Fe流量也会导致材料质量下降, 表面更加粗糙. 因此, 优选Cp2Fe流量为75 sccm, 相应方块电阻高达1 1010 /\Box, 外延了不同掺Fe层厚度的AlGaN/GaN HEMT结构, 并制备成器件. HEMT 器件均具有良好的夹断以及栅控特性, 并且增加掺Fe层厚度使得HEMT器件的击穿电压提高了39.3%, 同时对器件的转移特性影响较小.
    Fe-doped high-resistivity GaN films and AlGaN/GaN high electron mobility transistor (HEMT) structures have been grown on sapphire substrates by metal organic chemical vapor deposition. The lattice quality, surfaces, sheet resistances and luminescent characteristics of Fe-doped high-resistivity GaN with different Cp2Fe flow rates are studied. It is found that high resistivity can be obtained by Fe impurity introduced Fe3+/2+ deep acceptor level in GaN, which compensates for the background carrier concentration. Meanwhile, Fe impurity can introduce more edge dislocations acting as acceptors, which also compensate for the background carrier concentration to some extent. In a certain range, the sheet resistance of GaN material increases with increasing Cp2Fe flow rate. When the Cp2Fe flow rate is 100 sccm, the compensation efficiency decreases due to the self-compensation effect, which leads to the fact that the increase of the sheet resistance of GaN material is not obvious. In addition, the compensation for Fe atom at the vacancy of Ga atom can be explained as the result of suppressing yellow luminescence. Although the lattice quality is marginally affected while the Cp2Fe flow rate is 50 sccm, the increase of Cp2Fe flow rate will lead to a deterioration in quality due to the damage to the lattice, which is because more Ga atoms are substituted by Fe atoms. Meanwhile, Fe on the GaN surface reduces the surface mobilities of Ga atoms and promotes a transition from two-dimensional to three-dimensional (3D) GaN growth, which is confirmed by atomic force microscope measurements of RMS roughness with increasing Cp2Fe flow rate. The island generated by the 3D GaN growth will produce additional edge dislocations during the coalescence, resulting in the increase of the full width at half maximum of the X-ray diffraction rocking curve at the GaN (102) plane faster than that at the GaN (002) plane with increasing Cp2Fe flow rate. Therefore, the Cp2Fe flow rate of 75 sccm, which makes the sheet resistance of GaN as high as 1 1010 /\Box, is used to grow AlGaN/GaN HEMT structures with various values of Fe-doped layer thickness, which are processed into devices. All the HEMT devices possess satisfactory turn-off and gate-controlled characteristics. Besides, the increase of Fe-doped layer thickness can improve the breakdown voltage of the HEMT device by 39.3%, without the degradation of the transfer characteristic.
      通信作者: 邢艳辉, xingyanhui@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61204011, 11204009, 61574011)、北京市自然科学基金(批准号: 4142005)和北京市教委能力提升项目(批准号: PXM2014_014204_07_000018)资助的课题.
      Corresponding author: Xing Yan-Hui, xingyanhui@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61204011, 11204009, 61574011), the Natural Science Foundation of Beijing, China (Grant No. 4142005), and the Scientific Reasearch Fund Project of Municipal Education Commission of Beijing, China (Grant No. PXM2014_014204_07_000018).
    [1]

    Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302 (in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 63 117302]

    [2]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]

    [3]

    Wang C, Zhang K, He Y L, Zhang X F, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. Lett. 31 128501

    [4]

    Shrestha N M, Wang Y Y, Li Y, Chang E Y 2015 Vacuum 118 59

    [5]

    Zhou X Y, Feng Z H, Wang Y G, Gu G D, Song X B, Cai S J 2015 Chin. Phys. B 24 048503

    [6]

    Cui L, Wang Q, Wang X L, Xiao H L, Wang C M, Jiang L J, Feng C, Yin H B, Gong J M, Li B Q, Wang Z G 2015 Chin. Phys. Lett. 32 058501

    [7]

    Tang C, Xie G, Sheng K 2015 Microelectron. Reliab. 55 347

    [8]

    Li C, Li Z, Peng D, Ni J, Pan L, Zhang D, Dong X, Kong Y 2015 Semicond. Sci. Tech. 30 035007

    [9]

    Yanagihara M, Uemoto Y, Ueda T, Tanaka T, Ueda D 2009 Phys. Status Solidi A 206 1221

    [10]

    Gamarra P, Lacam C, Tordjman M, Splettst Sser J R, Schauwecker B, di Forte-Poisson M 2015 J. Cryst. Growth 414 232

    [11]

    Luo W, Li L, Li Z, Dong X, Peng D, Zhang D, Xu X 2015 J. Alloy. Compd. 633 494

    [12]

    Ishiguro T, Yamada A, Kotani J, Nakamura N, Kikkawa T, Watanabe K, Imanishi K 2013 Jpn. J. Appl. Phys. 52 08JB17

    [13]

    Li M, Wang Y, Wong K, Lau K 2014 Chin. Phys. B 23 038403

    [14]

    Choi Y C, Shi J, Pophristic M, Spencer M G, Eastman L F 2007 J. Vac. Sci. Technol. B 25 1836

    [15]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [16]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [17]

    Balmer R S, Soley D E J, Simons A J, Mace J D, Koker L, Jackson P O, Wallis D J, Uren M J, Martin T 2006 Phys. Stat. Sol. 3 1429

    [18]

    Lu D C, Duan S K 2009 Fundamental and Application of Metalorganic Vapor Phase Epitaxy (Beijing: Science Press) p201 (in Chinese) [陆大成, 段树坤 2009 金属有机化合物气相外延基础及应用 (北京:科学出版社) 第201页]

    [19]

    Heikman S, Keller S, Denbaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [20]

    van Nostrand J E, Solomon J, Saxler A, Xie Q H, Reynolds D C, Look D C 2000 J. Appl. Phys. 87 8766

    [21]

    Heitz R, Maxim P, Eckey L, Thurian P, Hoffmann A, Broser I, Pressel K, Meyer B K 1997 Phys. Rev. B 55 4382

    [22]

    Mita S, Collazo R, Dalmau R, Sitar Z 2007 Phys. Stat. Sol. 4 2260

    [23]

    Kuriyama K, Mizuki Y, Sano H, Onoue A, Hasegawa M, Sakamoto I 2005 Solid State Commun. 135 99

    [24]

    Feng Z H, Liu B, Yuan F P, Yin J Y, Liang D, Li X B, Feng Z, Yang K W, Cai S J 2007 J. Cryst. Growth 309 8

    [25]

    Zhang Z L, Yu G H, Zhang X D, Tan S X, Wu D D, Fu K, Huang W, Cai Y, Zhang B S 2015 Electron. Lett. 51 1201

  • [1]

    Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302 (in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 63 117302]

    [2]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]

    [3]

    Wang C, Zhang K, He Y L, Zhang X F, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. Lett. 31 128501

    [4]

    Shrestha N M, Wang Y Y, Li Y, Chang E Y 2015 Vacuum 118 59

    [5]

    Zhou X Y, Feng Z H, Wang Y G, Gu G D, Song X B, Cai S J 2015 Chin. Phys. B 24 048503

    [6]

    Cui L, Wang Q, Wang X L, Xiao H L, Wang C M, Jiang L J, Feng C, Yin H B, Gong J M, Li B Q, Wang Z G 2015 Chin. Phys. Lett. 32 058501

    [7]

    Tang C, Xie G, Sheng K 2015 Microelectron. Reliab. 55 347

    [8]

    Li C, Li Z, Peng D, Ni J, Pan L, Zhang D, Dong X, Kong Y 2015 Semicond. Sci. Tech. 30 035007

    [9]

    Yanagihara M, Uemoto Y, Ueda T, Tanaka T, Ueda D 2009 Phys. Status Solidi A 206 1221

    [10]

    Gamarra P, Lacam C, Tordjman M, Splettst Sser J R, Schauwecker B, di Forte-Poisson M 2015 J. Cryst. Growth 414 232

    [11]

    Luo W, Li L, Li Z, Dong X, Peng D, Zhang D, Xu X 2015 J. Alloy. Compd. 633 494

    [12]

    Ishiguro T, Yamada A, Kotani J, Nakamura N, Kikkawa T, Watanabe K, Imanishi K 2013 Jpn. J. Appl. Phys. 52 08JB17

    [13]

    Li M, Wang Y, Wong K, Lau K 2014 Chin. Phys. B 23 038403

    [14]

    Choi Y C, Shi J, Pophristic M, Spencer M G, Eastman L F 2007 J. Vac. Sci. Technol. B 25 1836

    [15]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [16]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [17]

    Balmer R S, Soley D E J, Simons A J, Mace J D, Koker L, Jackson P O, Wallis D J, Uren M J, Martin T 2006 Phys. Stat. Sol. 3 1429

    [18]

    Lu D C, Duan S K 2009 Fundamental and Application of Metalorganic Vapor Phase Epitaxy (Beijing: Science Press) p201 (in Chinese) [陆大成, 段树坤 2009 金属有机化合物气相外延基础及应用 (北京:科学出版社) 第201页]

    [19]

    Heikman S, Keller S, Denbaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [20]

    van Nostrand J E, Solomon J, Saxler A, Xie Q H, Reynolds D C, Look D C 2000 J. Appl. Phys. 87 8766

    [21]

    Heitz R, Maxim P, Eckey L, Thurian P, Hoffmann A, Broser I, Pressel K, Meyer B K 1997 Phys. Rev. B 55 4382

    [22]

    Mita S, Collazo R, Dalmau R, Sitar Z 2007 Phys. Stat. Sol. 4 2260

    [23]

    Kuriyama K, Mizuki Y, Sano H, Onoue A, Hasegawa M, Sakamoto I 2005 Solid State Commun. 135 99

    [24]

    Feng Z H, Liu B, Yuan F P, Yin J Y, Liang D, Li X B, Feng Z, Yang K W, Cai S J 2007 J. Cryst. Growth 309 8

    [25]

    Zhang Z L, Yu G H, Zhang X D, Tan S X, Wu D D, Fu K, Huang W, Cai Y, Zhang B S 2015 Electron. Lett. 51 1201

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响.  , 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型.  , 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [3] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究.  , 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [4] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性.  , 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [5] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应.  , 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [6] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响.  , 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [7] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理.  , 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [8] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析.  , 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [9] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理.  , 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [10] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理.  , 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [11] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究.  , 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [12] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究.  , 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [13] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型.  , 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [14] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究.  , 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [15] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性.  , 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [16] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究.  , 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [17] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究.  , 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [18] 李 潇, 刘 亮, 张海英, 尹军舰, 李海鸥, 叶甜春, 龚 敏. 一种新的磷化铟复合沟道高电子迁移率晶体管小信号物理模型.  , 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
    [19] 刘红侠, 郝 跃, 张 涛, 郑雪峰, 马晓华. AlGaAs/InGaAs/GaAs赝配高电子迁移晶体管的kink效应研究.  , 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
    [20] 吕永良, 周世平, 徐得名. 光照下高电子迁移率晶体管特性分析.  , 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
计量
  • 文章访问数:  7498
  • PDF下载量:  390
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-08
  • 修回日期:  2015-10-14
  • 刊出日期:  2016-01-05

/

返回文章
返回
Baidu
map