-
Pure colossal dielectric constant oxide CaCu3Ti4O12 (CCTO) compound was prepared by traditional ceramic processing. Dielectric dispersion and complex impedances spectra were investigated using a impedance analyzer within a temperature range of 10—420 K. The data were simulated by “ZVIEW” software. The result indicates that there are two obvious relaxations in the dielectric dispersion spectra when the temperature is higher than room temperature and the dielectric constant increases remarkably with increasing temperatures at a low frequency, which indicates a thermal ionic polarization. However, the frequency spectra becomes similar to Debye-type relaxation when the temperature is lower than room temperature and the low-and high-frequency relaxation step almost keeps unchanged with temperature, which reveals a feature of interface polarization and considerable temperature stability for CCTO. The relaxation revealed in the frequency spectra corresponds to the three different semicircles revealed by the impedance spectra, which indicated there are three inhomogeneous regions or polarization processes in CCTO ceramics and the colossal dielectric constant mainly comes from the extrinsic polarization of these inhomogenities. The activation energies are found to be respectively 0.05 eV, 0.58 eV and 0.49eV for the three different polarization processes by simulating the impedance semicircles using an equivalent circuit.
-
Keywords:
- CaCu3Ti4O12ceramic /
- dielectric frequency spectra /
- impedance spectra /
- Cole-Cole semicircles
[1] [1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323
[2] [2]Ramirez A P, Subramanian, Gardel M 2000 Solid State Commun. 115 217
[3] [3]Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673
[4] [4]Zhang J L, Zheng P, Wang C L, Zhao M L 2005 Appl. Phys. Lett. 87 142901
[5] [5]Shao S F, Zhang J L, Zheng P, Zhong W L, Wang C L 2006 J. Appl. Phys. 99 084106
[6] [6]Cao G H, Feng L X, Wang, C 2007 J. Phys. D: Appl. Phys. 40 2889
[7] [7]Sinclair D C, Adams T A, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153
[8] [8]Adams T B, Sinclair D C, West A R 2002 Ade. Matter.18 1321
[9] [9]Lunkenheimer P, Fichtl R, Ebbinghaus S G, Loidl A 2004 Phys. Rev. B 70 172102
[10] ]Sun D L, Wu A Y, Yin S T 2008 J. Am. Ceram. Soc .91 169
[11] ]Chung S Y, Kim I D, Kang S J L 2004 Nat. Mater. 3 774
[12] ]Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124
[13] ]Li J, Cho K, Wu N, Ignatiev A 2004 IEEE Trans. Dielectr. Elect. Insul. 11 534
[14] ]Zang G Z, Zhang J L, Zheng P, Wang J F, Wang C L 2005 J. Phys. D: Appl. Phys. 38 1824
[15] ]Adams T B, Sinclair D C, West A R 2006 J. Am. Ceram. Soc. 89 3129
[16] ]Shao S F, Zheng P, Zhang J L, Niu K X, Wang C L, Zhong W L 2006 Acta Phys. Sin. 58 523 (in Chinese) [邵守福、郑鹏、张家良、钮效鹍、王春雷、钟维烈 2006 55 6661]
[17] ]He L, Neaton J B, Morrel H,Vanderbilt D 2002 Phys. Rev. B 65 21411
[18] ]Ni L, Chen X M 2007 Appl. Phys. Lett . 91 122905
[19] ]Yin G L, Li J Y, Li S T 2009 Acta Phys. Sin. 58 523 (in Chinese) [尹桂来、李建英、李盛涛 2009 58 4219]
[20] ]Krzysztof S, Wolfgang S, Gustav B, Rainer W 2006 Nat. Mater. 5 312
[21] ]Li S T, Cheng P F, Zhao L, Li J Y 2009 Acta Phys. Sin. 58 523 (in Chinese) [李盛涛、成鹏飞、赵雷、李建英 2009 58 523]
[22] ]Yang F X, Zhang D M, Deng Z W 2008 Acta Phys. Sin. 57 3840 (in Chinese) [杨凤霞、张端明、邓宗伟等 2008 57 3840]
-
[1] [1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323
[2] [2]Ramirez A P, Subramanian, Gardel M 2000 Solid State Commun. 115 217
[3] [3]Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673
[4] [4]Zhang J L, Zheng P, Wang C L, Zhao M L 2005 Appl. Phys. Lett. 87 142901
[5] [5]Shao S F, Zhang J L, Zheng P, Zhong W L, Wang C L 2006 J. Appl. Phys. 99 084106
[6] [6]Cao G H, Feng L X, Wang, C 2007 J. Phys. D: Appl. Phys. 40 2889
[7] [7]Sinclair D C, Adams T A, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153
[8] [8]Adams T B, Sinclair D C, West A R 2002 Ade. Matter.18 1321
[9] [9]Lunkenheimer P, Fichtl R, Ebbinghaus S G, Loidl A 2004 Phys. Rev. B 70 172102
[10] ]Sun D L, Wu A Y, Yin S T 2008 J. Am. Ceram. Soc .91 169
[11] ]Chung S Y, Kim I D, Kang S J L 2004 Nat. Mater. 3 774
[12] ]Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124
[13] ]Li J, Cho K, Wu N, Ignatiev A 2004 IEEE Trans. Dielectr. Elect. Insul. 11 534
[14] ]Zang G Z, Zhang J L, Zheng P, Wang J F, Wang C L 2005 J. Phys. D: Appl. Phys. 38 1824
[15] ]Adams T B, Sinclair D C, West A R 2006 J. Am. Ceram. Soc. 89 3129
[16] ]Shao S F, Zheng P, Zhang J L, Niu K X, Wang C L, Zhong W L 2006 Acta Phys. Sin. 58 523 (in Chinese) [邵守福、郑鹏、张家良、钮效鹍、王春雷、钟维烈 2006 55 6661]
[17] ]He L, Neaton J B, Morrel H,Vanderbilt D 2002 Phys. Rev. B 65 21411
[18] ]Ni L, Chen X M 2007 Appl. Phys. Lett . 91 122905
[19] ]Yin G L, Li J Y, Li S T 2009 Acta Phys. Sin. 58 523 (in Chinese) [尹桂来、李建英、李盛涛 2009 58 4219]
[20] ]Krzysztof S, Wolfgang S, Gustav B, Rainer W 2006 Nat. Mater. 5 312
[21] ]Li S T, Cheng P F, Zhao L, Li J Y 2009 Acta Phys. Sin. 58 523 (in Chinese) [李盛涛、成鹏飞、赵雷、李建英 2009 58 523]
[22] ]Yang F X, Zhang D M, Deng Z W 2008 Acta Phys. Sin. 57 3840 (in Chinese) [杨凤霞、张端明、邓宗伟等 2008 57 3840]
Catalog
Metrics
- Abstract views: 8459
- PDF Downloads: 1114
- Cited By: 0