Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical design of X-ray focusing telescope

Qiang Peng-Fei Sheng Li-Zhi Li Lin-Sen Yan Yong-Qing Liu Zhe Zhou Xiao-Hong

Citation:

Optical design of X-ray focusing telescope

Qiang Peng-Fei, Sheng Li-Zhi, Li Lin-Sen, Yan Yong-Qing, Liu Zhe, Zhou Xiao-Hong
PDF
HTML
Get Citation
  • X-ray focusing telescope is one of the most important equipment for X-ray space observation, which is designed based on the grazing incidence principle. The purpose of x-ray observation is to detect the black holes of various sizes in outer space, and the data obtained by X-ray telescope conduces to investigating the basic physical law under the condition of extreme gravity and magnetic field, In this article, multi-layer telescope is designed to satisfy the demand for enhanced X-ray timing and polarimetry mission. in which the telescope is designed based on Wolter-I telescope. The Monte Carlo method and power spectral density are used when the relationship between mirror profile and roughness with angular resolution is investigated. We analyze the relationship between angular resolution and mirror profile, and the result shows that the higher mirror profile possesses higher angular resolution. When the root mean square(RMS) of mirror profile is 0.04 μm, PV is 0.2 μm and roughness is 0.4 nm, the mirror angular resolution is 6.3" and it will change to 30.6" when the RMS of mirror profile is 0.2 μm, PV is 1 μm and roughness is 0.4 nm. The angular resolution out of focus is also investigated in this article, and the more defocusing amount gives rise to the worse angular resolution because defocusing spot will be larger than that of focal plane. So the maximum defocusing amount of 5 mm is required when the focal plane detector is installed. The relationship between effective area with film structure and layers number is also investigated. The film with Au mixed with C has a higher reflectivity than the film with only Au, because the mixed film will generate an interference effect and enhance the intensity of reflecting X-ray. When the telescope layers increase, the effective area and telescope weight are both improved, the requirement for effective area of satellite can be satisfied when the number of nesting layers is 45. However, when the number of nesting layers further increase, the effective area will be improved with a low speed, but the weight of telescope will increase with a high speed. The field of view of this telescope is 16′, which is more than the required value of 12′. Finally, the X-ray focusing telescope with 5.25 m focal length, 45 nesting layers, effective area 842 cm2 at 2 keV, 563 cm2 at 6 keV is obtained.
      Corresponding author: Sheng Li-Zhi, lizhi_sheng@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471357) and Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020106-03).
    [1]

    Yuan W M, Zhang C, Chen Y. 2018 Sci. China: Phys. Mech. 48 3

    [2]

    Jeong S, Panasyuk M I, Reglero V 2018 Space Sci. Rev. 214 25Google Scholar

    [3]

    Zhang S N, Santangelo A, Feroci M 2019 Sci. China Phys. Mech 62 25

    [4]

    Zand J J M, Bozzo E, Qu J L 2019 Sci. China Phys. Mech. 62 029506Google Scholar

    [5]

    Camilo F, Scholz P, Serylak M 2018 Astrophys. J. 856 11Google Scholar

    [6]

    刘舵, 强鹏飞, 李林森, 苏桐, 盛立志, 刘永安, 赵宝升. 2016 65 010703

    Liu D, Qiang P F, Li L S, Su T, Sheng L Z, Liu Y A, Zhao B S 2016 Acta Phys. Sin. 65 010703

    [7]

    Li L S, Qiang P F, Sheng L Z 2017 Chin. Phys. B 26 100703

    [8]

    李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 67 200701

    Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701

    [9]

    方海燕, 丛少鹏, 孙海峰, 李小平, 苏剑宇, 张力, 沈利荣 2019 68 089701

    Fang H Y, Cong S P, Sun H F, Li X P, Su J Y, Zhanf L, Shen L R 2019 Acta Phys. Sin. 68 089701

    [10]

    Sheikh S I, Hanson J E, Graven P H 2011 Navigation 58 165Google Scholar

    [11]

    Wang Y, Zheng W, Sun S 2013 Adv. Space Res. 51 2394Google Scholar

    [12]

    Weisskopf M C, Brinkman B, Canizares C 2002 Publ. Astron. Soc. Pac. 114 1Google Scholar

    [13]

    Starling R L C, Wildy C, Wiersema K 2017 Mon. Not. R. Astron. Soc. 468 378Google Scholar

    [14]

    Devasia J, Paul B 2018 Astrophys. Astron. 39 7Google Scholar

    [15]

    Bamba A, Puehlhofer G, Acero F 2012 Astrophys. J. 761 80Google Scholar

    [16]

    Kelley R L, Nakazawa K 2018 J. Astron. Telesc. Inst. 4 1

    [17]

    Balsamo E, Gendreau K, Okajima T 2016 J. Astron. Telesc. Inst. 2 9

    [18]

    Rao K R 1999 Curr. Sci. India 77 1125

    [19]

    Tsujimoto M, Morihana K, Hayashi T 2018 Publ. Astron. Soc. Japan 70 14

    [20]

    Hagino K, Nakazawa K, Sato G 2018 J. Astron. Telesc. Inst. 4 15

    [21]

    Eckart M E, Adams J S, Boyce K R 2018 J. Astron. Telesc. Inst. 4 22

    [22]

    Keek L, Arzoumanian Z, Bult P 2018 Astrophys J Lett. 855 6Google Scholar

  • 图 1  X射线聚焦望远镜的光学原理

    Figure 1.  Optical principle of X-ray focusing telescope.

    图 2  不同面型精度聚焦镜片的焦斑形状与能量包围函数 (a) RMS 0.04为 μm, PV为0.2 μm, 粗糙度为0.4 nm镜片的焦斑形状尺寸; (b) RMS为0.04 μm, PV为0.2 μm, 粗糙度为0.4 nm镜片的焦斑能量包围函数; (c) RMS为0.2 μm, PV为1 μm, 粗糙度为0.4 nm镜片的焦斑形状尺寸; (d) RMS为0.2 μm, PV为1 μm, 粗糙度为0.4 nm镜片的焦斑能量包围函数

    Figure 2.  Focal points and energy encircle functions obtained by mirrors with different profile: (a) Focal point obtained by mirror with profile of RMS 0.04 μm, PV 0.2 μm, roughness 0.4 nm; (b) energy encircle functions obtained by mirror with profile of RMS 0.04 μm, PV 0.2 μm roughness 0.4 nm; (c) focal point obtained by mirror with profile of RMS 0.2 μm, PV 1 μm roughness 0.4 nm; (d) energy encircle functions obtained by mirror with profile of RMS 0.2 μm, PV 0.1 μm roughness 0.4 nm.

    图 3  X射线聚焦望远镜的角分辨率与离焦量的关系

    Figure 3.  Relationship between angular resolution and defocus amount in focusing observatory.

    图 4  (a)膜层材料为Au的X射线聚焦望远镜反射率与不同掠入射角的关系; (b)膜层材料为Au加C复合膜的X射线聚焦望远镜反射率与不同掠入射角的关系

    Figure 4.  (a) Relationship between reflectivity and degree of focusing mirrors with Au film; (b) relationship between reflectivity and degree of focusing mirrors with Au, C multi-layer film.

    图 5  X射线聚焦望远镜有效面积与偏轴角的关系

    Figure 5.  Relationship between effective area and off axis in focusing observatory.

    图 6  (a) X射线聚焦望远镜有效面积与嵌套层数的关系; (b) X射线聚焦望远镜有效面积与镜片重量的关系

    Figure 6.  (a) Relationship between and effective area and mirror layers in focusing observatory; (b) relationship between and effective area and mirror weight in focusing observatory

    Baidu
  • [1]

    Yuan W M, Zhang C, Chen Y. 2018 Sci. China: Phys. Mech. 48 3

    [2]

    Jeong S, Panasyuk M I, Reglero V 2018 Space Sci. Rev. 214 25Google Scholar

    [3]

    Zhang S N, Santangelo A, Feroci M 2019 Sci. China Phys. Mech 62 25

    [4]

    Zand J J M, Bozzo E, Qu J L 2019 Sci. China Phys. Mech. 62 029506Google Scholar

    [5]

    Camilo F, Scholz P, Serylak M 2018 Astrophys. J. 856 11Google Scholar

    [6]

    刘舵, 强鹏飞, 李林森, 苏桐, 盛立志, 刘永安, 赵宝升. 2016 65 010703

    Liu D, Qiang P F, Li L S, Su T, Sheng L Z, Liu Y A, Zhao B S 2016 Acta Phys. Sin. 65 010703

    [7]

    Li L S, Qiang P F, Sheng L Z 2017 Chin. Phys. B 26 100703

    [8]

    李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 67 200701

    Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701

    [9]

    方海燕, 丛少鹏, 孙海峰, 李小平, 苏剑宇, 张力, 沈利荣 2019 68 089701

    Fang H Y, Cong S P, Sun H F, Li X P, Su J Y, Zhanf L, Shen L R 2019 Acta Phys. Sin. 68 089701

    [10]

    Sheikh S I, Hanson J E, Graven P H 2011 Navigation 58 165Google Scholar

    [11]

    Wang Y, Zheng W, Sun S 2013 Adv. Space Res. 51 2394Google Scholar

    [12]

    Weisskopf M C, Brinkman B, Canizares C 2002 Publ. Astron. Soc. Pac. 114 1Google Scholar

    [13]

    Starling R L C, Wildy C, Wiersema K 2017 Mon. Not. R. Astron. Soc. 468 378Google Scholar

    [14]

    Devasia J, Paul B 2018 Astrophys. Astron. 39 7Google Scholar

    [15]

    Bamba A, Puehlhofer G, Acero F 2012 Astrophys. J. 761 80Google Scholar

    [16]

    Kelley R L, Nakazawa K 2018 J. Astron. Telesc. Inst. 4 1

    [17]

    Balsamo E, Gendreau K, Okajima T 2016 J. Astron. Telesc. Inst. 2 9

    [18]

    Rao K R 1999 Curr. Sci. India 77 1125

    [19]

    Tsujimoto M, Morihana K, Hayashi T 2018 Publ. Astron. Soc. Japan 70 14

    [20]

    Hagino K, Nakazawa K, Sato G 2018 J. Astron. Telesc. Inst. 4 15

    [21]

    Eckart M E, Adams J S, Boyce K R 2018 J. Astron. Telesc. Inst. 4 22

    [22]

    Keek L, Arzoumanian Z, Bult P 2018 Astrophys J Lett. 855 6Google Scholar

  • [1] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu. K-X rays induced by helium-like C ions in thick target atoms of different metals. Acta Physica Sinica, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An. K-shell X-ray of Al produced by collisions of ions with near Bohr velocities. Acta Physica Sinica, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] Zhang Bing-Zhang,  Song Zhang-Yong,  Zhang Ming-Wu,  Liu Xuan,  Qian Cheng,  Fang Xin,  Shao Chao-Jie,  Wang Wei,  Liu Jun-Liang,  Zhu Zhi-Chao,  Sun Liang-Ting,  Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [4] Zhang Bing-Zhang, Song Zhang-Yong, Zhang Ming-Wu, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Zhu Zhi-Chao, Sun Liang-Ting, Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [5] Zhou Shao-Tong, Ren Xiao-Dong, Huang Xian-Bin, Xu Qiang. Soft x-ray imaging system used for Z-pinch experiments. Acta Physica Sinica, 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [6] Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng. X-ray transmission characteristics and potential communication application in plasma region. Acta Physica Sinica, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [7] Zhang Yao, Tang Shan-Zhi, Li Ming, Wang Li-Chao, Gao Jun-Xiang. Present research status of piezoelectric bimorph mirrors in synchrotron radiation sources. Acta Physica Sinica, 2016, 65(1): 010702. doi: 10.7498/aps.65.010702
    [8] Wen Ming-Wu, Yang Xiao-Wei, Wang Zhan-Shan. Simulation of nano-grating patterning based on X-ray Talbot effect. Acta Physica Sinica, 2015, 64(11): 114102. doi: 10.7498/aps.64.114102
    [9] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Zhou Xian-Ming, Xiao Guo-Qing. Study of X-ray spectrum emitted due to the impact of 129Xeq+ on different ion's charge on Au. Acta Physica Sinica, 2015, 64(5): 053201. doi: 10.7498/aps.64.053201
    [10] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xe26+ of the different kinetic energies on Au surface. Acta Physica Sinica, 2014, 63(16): 163201. doi: 10.7498/aps.63.163201
    [11] Zhang Xiao-An, Mei Ce-Xiang, Zhao Yong-Tao, Cheng Rui, Wang Xing, Zhou Xian-Ming, Lei Yu, Sun Yuan-Bo, Xu Ge, Ren Jie-Ru. X-ray emission of C6+ pulsed ion beams of CSR impacting on Au target. Acta Physica Sinica, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [12] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Cheng Rui, Zhou Xian-Ming, Lei Yu, Wang Xing, Sun Yuan-Bo, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 152Eu20+ of near Bohn velocity on Au surface. Acta Physica Sinica, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [13] Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Liang Chang-Hui, Cheng Rui, Zhou Xian-Ming, Wang Xing, Lei Yu, Sun Yuan-Bo, Xu Ge, Li Jin-Yu, Xiao Guo-Qing. Thresholds for kinetic and potential energies of Arq+ induced Au target atomic M-X rays emission. Acta Physica Sinica, 2012, 61(11): 113401. doi: 10.7498/aps.61.113401
    [14] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xeq+ on Mo surface. Acta Physica Sinica, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [15] Liu Xin, Lei Yao-Hu, Zhao Zhi-Gang, Guo Jin-Chuan, Niu Han-Ben. Design and fabrication of hard X-ray phase grating. Acta Physica Sinica, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [16] Zhang Xiao-An, Yang Zhi-Hu, Wang Dang-Chao, Mei Ce-Xiang, Niu Chao-Ying, Wang Wei, Dai Bin, Xiao Guo-Qing. Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface. Acta Physica Sinica, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [17] Chen Bo, Zhu Pei_Ping, Liu Yi-Jin, Wang Jun-Yue, Yuan Qing_Xi, Huang Wan_Xia, Ming Hai, Wu Zi-Yu. Theory and method of X_ray grating phase contrast imaging. Acta Physica Sinica, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [18] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] Zhao Yong-Tao, Xiao Guo-Qing, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Li Fu-Li, Zhang Yan-Ping, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The x-ray spectra of hollow atoms. Acta Physica Sinica, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [20] Xu Rong- Kun, Li Zheng -Hong, Guo Cun, Yang Jian -Lun, Li Lin-Bo, Song Feng -Jun, Ning Jia-Min, Xia Guang -Xin, Xu Ze-Ping. Onedimensional imaging system for the diagnosis of the Zpinch xray radiation. Acta Physica Sinica, 2003, 52(5): 1203-1206. doi: 10.7498/aps.52.1203
Metrics
  • Abstract views:  9825
  • PDF Downloads:  145
  • Cited By: 0
Publishing process
  • Received Date:  10 May 2019
  • Accepted Date:  12 June 2019
  • Available Online:  01 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map