-
The third-generation synchrotron radiation sources are widely used in physics, chemistry, material science, etc. due to their light beams with high brilliance and low emittance. In order to efficiently utilize such light beams for scientific research, reflective mirrors with excellent figure quality are required. The reflective mirrors on the beamlines of synchrotron radiation sources consist of fixed polished shape mirrors and bendable mirrors. Bendable mirrors have been attracting the attention of the synchrotron radiation community because their curvatures can be varied to realize different focusing properties. Classical bendable mirrors are realized by applying mechanical moment at the ends of the mirror substrates. In this paper, we introduce a new concept of bendable mirrors, X-ray adaptive mirrors which are based on the adaptive optics technology and the properties of piezoelectric bimorph systems. X-ray adaptive mirrors exhibit many advantages over the classical bendable mirrors, such as mechanics-free, figure local corrections, and good focusing properties. The piezoelectric bimorph mirrors have been used in astronomy to correct the wavefront distortions introduced by atmospheric turbulence in real time. The piezoelectric bimorph mirror was first introduced into the field of synchrotron radiation by European Synchrotron Radiation Facility (ESRF) in the 1990s for making an X-ray reflective mirror. Compared with astronomy community, synchrotron radiation community is not interested in high-speed wavefront correction, but looking for the ultimate precision of the surface shape of piezoelectric bimorph mirror. In the second part of this paper, the usual structure and working principle are briefly described. Piezoelectric bimorph mirrors are laminated structures consisting of two strips of an active material such as zirconate lead titanate (PZT) and two faceplates of a reflecting material such as silicon. A discrete or continuous control electrode is located between the interfaces of PZT-PZT, while two continuous ground electrodes are located between the interfaces of Si-PZT. The PZTs that are polarized normally to their surface, any voltage applied across the bimorph results in a different change of the lateral dimensions of two PZTs, thereby leading to a bending of the whole structure. The relationship between the curvature of the bending mirror and voltage is given. In the third part of this paper, the technical issues as well as the design concepts are discussed in detail. Several Si-PZT-PZT-Si bimorph mirrors are first fabricated and tested by ESRF. The dimensions of each of them are 150 mm in length, 4045 mm in width, and 1518 mm in thickness. PZT is selected as an active material because of its high coupling factor, high piezoelectric coefficient, and high Curie temperature. The faceplates need to be easy to polish such as silicon and silica. Owing to the symmetrical layered structure Si-PZT-PZT-Si, the mirror is less sensitive to temperature variations from the process of bonding and polishing. The bimorph mirrors are confirmed to be promising by experimental tests. As the state-of-art polishing technique, elastic emission machining (EEM) becomes available commercially, and diamond light source brings EEM into the bimorph mirror to achieve a novel adaptive X-ray mirror coupling adaptive zonal control with a super-smooth surface. This super-polished adaptive mirror becomes the first optics with a bendable ellipse with sub-nanometer figure error. Spring-8 fabricates an adaptive mirror with different structures, and two strips of PZTs are glued to the side faces of the mirror. This mirror shows a diffraction-limited performance. Finally, the wavefront measuring methods and control algorithm are introduced. Wavefront measuring devices used in the metrology cleanroom include long trace profiler, nanometer optics component measuring machine, and interferometer. At-wavelength measuring methods used on the beamline include pencil-beam method, phase retrieval method, X-ray speckle tracking technique, and Hartmann test. The wavefront control algorithm is aimed at obtaining the voltages applied according to the inverse of the interaction matrix.
-
Keywords:
- synchrotron radiation /
- adaptive /
- piezoelectric bimorph mirror /
- X-ray
[1] Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202 (in Chinese) [戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 63 104202]
[2] Dong S Q, Li L Q, Liu P, Dong Y H, Chen X M 2008 Chin. Phys. B 17 4574
[3] Zhang K, Li D E, Hong Y L, Zhu P P, Yuan Q X, Huang W X, Gao K, Zhou H Z, Wu Z Y 2013 Chin. Phys. B 22 076801
[4] Zhao Y J, Shan X B, Sheng L S, Wang Z Y, Zhang J, Yu C R 2011 Chin. Phys. B 20 043201
[5] Zhang S H, Wang J O, Qian H J, Wu R, Zhang N, Lei T, Liu C, Kurash I 2015 Chin. Phys. B 24 027901
[6] Li Y D, Lin X Y, Liu S G, He J L, Guo F, Sun T X, Liu P 2013 Chin. Phys. B 22 044103
[7] Le Z C, Dong W, Liu W, Zhang M, Liang J Q, Quan B S, Liu K, Liang Z Z, Zhu P P, Yi F T, Huang W X 2010 Acta Phys. Sin. 59 1977 (in Chinese) [乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘凯, 梁中翥, 朱佩平, 伊福廷, 黄万霞 2010 59 1977]
[8] Howells M R, Cambie D, Duarte R M, Irich S, Macdowell A A, Padmore H A, Renner T R 2000 Opt. Eng. 39 2748
[9] Padmore H A, Howells M R, Irick S, Renner T, Sandler R, Koo Y M 1996 Proc. SPIE 2856 145
[10] Rommeveaux A, Hignette O, Morawe C 2005 Proc. SPIE 5921 59210N
[11] Rossetti D, Lienert U, Pradervand C, Schneider R, Shi M, Zelenika S, Rossat M, Hignette O, Rommeveaux A, Schulze-Briese C 2002 Proc. SPIE 4782 86
[12] Zhang L, Hustache R, Hignette O, Ziegler E, Freund A 1998 J. Synchrotron Rad. 5 804
[13] Heald S M 2011 Nucl. Instrum. Meth. Phys. Res. A 649 128
[14] Howells M R 1993 Opt. Eng. 32 1981
[15] Mao C W, Xi Z J, Yu X N, Xiao T Q 2009 Chin. Phys. C 33 687
[16] Tseng T C, Wang D J, Perng S Y, Kuan C K, Lin J R, Chang S H, Chen C T 2003 J. Synchrotron Rad. 10 97
[17] Kamachi N, Endo K, Ohashi H 2004 AIP Conf. Proc. 705 788
[18] Susini J, Labergerie D, Zhang L 1995 Rev. Sci. Instrum. 66 2229
[19] Hardy J W, Lefebvre J E, Koliopoulos C L 1977 J. Opt. Soc. Am. 67 360
[20] Jiang W H 1997 Physics 26 73 (in Chinese) [姜文汉 1997 物理 26 73]
[21] Hardy J W, Thommpson L 2000 Phys. Today 53 69
[22] Babcick H W 1953 Publ. Astron. Soc. Pac. 65 229
[23] Liu R X, Zheng X L, Li D Y, Xia M L, Hu L F, Gao Z L, Mu Q Q, Xuan L 2014 Chin. Phys. B 23 094211
[24] Lu J, Li H, He Y, Shi G H, Zhang Y D 2011 Acta Phys. Sin. 60 034207 (in Chinese) [卢婧, 李昊, 何毅, 史国华, 张雨东 2011 60 034207]
[25] Liang C, Liao W H, Shen J X 2007 Appl. Laser 27 237 (in Chinese) [梁春, 廖文和, 沈建新 2007 应用激光 27 237]
[26] Jiang W H 1992 Opto-Electron. Eng. 19 50 (in Chinese) [姜文汉 1992 光电工程 19 50]
[27] Jiang W H, Zhang Y D, Rao C H, Ling N, Guan C L, Li M, Yang Z P, Shi G H 2011 Acta Opt. Sin. 31 0900106 (in Chinese) [姜文汉, 张雨东, 饶长辉, 凌宁, 官春林, 李梅, 杨泽平, 史国华 2011 光学学报 31 0900106]
[28] Zhang Y D, Jiang W H, Shi G H, Ling N, Dai Y, Xue L X, Yu X, Rao C J 2007 Sci. China Ser. G 37 68 (in Chinese) [张雨东, 姜文汉, 史国华, 凌宁, 戴云, 薛丽霞, 余翔, 饶学军 2007 中国科学 G 辑: 物理学 力学 天文学 37 68]
[29] Alcock S G, Sutter J P, Sawhney K J S, Hall D R, McAuley K, Sorensen T 2013 Nucl. Instrum. Meth. Phys. Res. A 710 87
[30] Susini J, Labergerie D, Hignette O 1996 Proc. SPIE 2856 130
[31] Signorato R, Hausermann D, Somayazulu M, Carre J F, Dinger U, Ota K 2004 Proc. SPIE 5193 112
[32] Signorato R, Hignette O, Goulon J 1998 J. Synchrotron Rad. 5 797
[33] Ling X D, Xue C, Liu X Y, Wang J L, Wei P F 2012 Chin. Opt. 5 337 (in Chinese) [林旭东, 薛陈, 刘欣悦, 王建立, 卫沛锋 2012 中国光学 5 337]
[34] Jiang W H 2006 Chin. J. Nat. 28 7 (in Chinese) [姜文汉 2006 自然杂志 28 7]
[35] Ning Y, Zhou H, Yu H, Rao C H, Jiang W H 2009 Chin. Phys. B 18 1089
[36] Susini J, Baker R, Krumrey M, Schwegle W, Kvick 1995 Rev. Sci. Instrum. 66 2048
[37] Susini J, Marot G, Zhang L, Ravelet R, Jagourel P 1992 Rev. Sci. Instrum. 63 489
[38] Hignette O, Freund A, Chinchio E 1997 Proc. SPIE 3152 188
[39] Hignette O, Rommeveaux A 1996 Proc. SPIE 2856 314
[40] Signorate R, Sanchez M R 1997 Proc. SPIE 3152 136
[41] Zhou H 2013 Ph. D. Dissertation (Hefei: University of Chinese Academy of Sciences) (in Chinese) [周虹 2013 博士学位论文 (合肥: 中国科学院大学)]
[42] Steinhaus E, Lipaon S G 1979 J. Opt. Soc. Am. 69 478
[43] Halevi P 1983 J. Opt. Soc. Am. 73 110
[44] Jagourel P 1990 Proc. SPIE 1237 394
[45] Kudryashov A V 1996 Opt. Eng. 35 3064
[46] Kokorowski S A 1979 J. Opt. Soc. Am. 69 181
[47] Tseng T C, Chen S J, Yeh Z C, Perng S Y, Wang D J, Kuan C K, Chen J R, Chen C T 2001 Nucl. Instrum. Meth. Phys. Res. A 467-468 294
[48] Tseng T C, Perng S Y, Lin J R, Wang S H, Chang S H 2002 Proceedings MEDSI02 Argonne, USA, September 5-6, 2002 p271
[49] Ferm J J 2007 AIP Conf. Proc. 879 501
[50] Sawhney K J S, Alcock S G, Signorato R 2010 Proc. SPIE 7803 780303
[51] Siewert F, Noll T, Schlegel T, Zeschke T, Lammert H 2004 AIP Conf. Proc. 705 847
[52] Alcock S G, Sawhney K J S, Scott S, Pedersen U, Walton R, Siewert F, Zeschke T, Noll T, Lammert H 2010 Nucl. Instrum. Meth. Phys. Res. A 616 224
[53] Sawhney K, Alcock S, Sutter J, Berujon S, Wang H C, Signorato R 2013 J. Phys.: Conf. Ser. 425 052026
[54] Matsuyama S, Kimura T, Nakamori H, Imai S, Sano Y, Kohmura Y, Tamasaku K, Yabashi M, Ishikawa T, Yamauchi K 2012 Proc. SPIE 8503 850303
[55] Nakamori H, Matsuyama S, Imai S, Kimura T, Sano Y, Kohmura Y, Tamasaku K, Yabashi M, Ishikawa T, Yamauchi K 2012 Rev. Sci. Instrum. 83 053701
[56] Kimura T, Handa S, Mimura H, Yumoto H, Yamakawa D, Matsuyama S, Inagaki K, Sano Y, Tamasaku K, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2009 Jap. J. Appl. Phys. 48 072503
[57] Kimura T, Handa S, Mimura H, Yumoto H, Yamakawa D, Matsuyama S, Sano Y, Tamasaku K, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2008 Proc. SPIE 7077 707709
[58] Nakamori H, Matsuyama S, Imai S, Kimura T, Sano Y, Kohmura Y, Tamasaku K, Yabashi M, Ishikawa T, Yamauchi K 2013 Nucl. Instrum. Meth. Phys. Res. A 710 93
[59] Signorato R 1998 Proc. SPIE 3447 20
[60] Signorato R 1999 Proc. SPIE 3773 50
[61] Qian S N, Jark W 1995 Rev. Sci. Instrum. 66 2562
[62] Takacs P, Qian S N, Colbert J 1987 Proc. SPIE 749 59
[63] Signorato R, Carre J F, Ishikawa T 2001 Proc. SPIE 4501 76
[64] Signorato R, Ishikawa T 2001 Nucl. Instrum. Meth. Phys. Res. Sect. A 467-468 271
[65] Idir M, Mercre P 2013 Adaptive Optics: Methods, Analysis and Applications 2013 Arlington, USA, June 23-27, 2013 OM3A.1
[66] Siewert F, Buchheim J, Hft T, Fiedler S, Bourenkov G, Cianci M, Signorato R 2012 Meas. Sci. Technol. 23 1
[67] Sutter J, Alcock S, Sawhney K 2012 J. Synchrotron Rad. 19 960
[68] Kimura T, Mimura H, Handa S, Yumoto H, Yokoyama H, Imai S, Matsuyama S, Sano Y, Tamasaku K, Komura Y, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2010 Rev. Sci. Instrum. 81 123704
[69] Mimura H, Yumoto H, Matsuyama S, Handa S, Kimura T, Sano Y, Yabashi M, Nishino Y, Tamasaku K, Ishikawa T, Yamauchi K 2008 Phys. Rev. A 77 015812
[70] Brujon S, Ziegler E, Cerbino R, Peverini L 2012 Phys. Rev. Lett. 108 158102
[71] Sawhney K, Wang H C, Sutter J, Alcock S, Berujon S 2013 Synchrotron Radiation News 26 17
[72] Signorato R 2004 AIP Conf. Proc. 705 812
[73] Huang R 2011 J. Synchrotron Rad. 18 930
-
[1] Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202 (in Chinese) [戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 63 104202]
[2] Dong S Q, Li L Q, Liu P, Dong Y H, Chen X M 2008 Chin. Phys. B 17 4574
[3] Zhang K, Li D E, Hong Y L, Zhu P P, Yuan Q X, Huang W X, Gao K, Zhou H Z, Wu Z Y 2013 Chin. Phys. B 22 076801
[4] Zhao Y J, Shan X B, Sheng L S, Wang Z Y, Zhang J, Yu C R 2011 Chin. Phys. B 20 043201
[5] Zhang S H, Wang J O, Qian H J, Wu R, Zhang N, Lei T, Liu C, Kurash I 2015 Chin. Phys. B 24 027901
[6] Li Y D, Lin X Y, Liu S G, He J L, Guo F, Sun T X, Liu P 2013 Chin. Phys. B 22 044103
[7] Le Z C, Dong W, Liu W, Zhang M, Liang J Q, Quan B S, Liu K, Liang Z Z, Zhu P P, Yi F T, Huang W X 2010 Acta Phys. Sin. 59 1977 (in Chinese) [乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘凯, 梁中翥, 朱佩平, 伊福廷, 黄万霞 2010 59 1977]
[8] Howells M R, Cambie D, Duarte R M, Irich S, Macdowell A A, Padmore H A, Renner T R 2000 Opt. Eng. 39 2748
[9] Padmore H A, Howells M R, Irick S, Renner T, Sandler R, Koo Y M 1996 Proc. SPIE 2856 145
[10] Rommeveaux A, Hignette O, Morawe C 2005 Proc. SPIE 5921 59210N
[11] Rossetti D, Lienert U, Pradervand C, Schneider R, Shi M, Zelenika S, Rossat M, Hignette O, Rommeveaux A, Schulze-Briese C 2002 Proc. SPIE 4782 86
[12] Zhang L, Hustache R, Hignette O, Ziegler E, Freund A 1998 J. Synchrotron Rad. 5 804
[13] Heald S M 2011 Nucl. Instrum. Meth. Phys. Res. A 649 128
[14] Howells M R 1993 Opt. Eng. 32 1981
[15] Mao C W, Xi Z J, Yu X N, Xiao T Q 2009 Chin. Phys. C 33 687
[16] Tseng T C, Wang D J, Perng S Y, Kuan C K, Lin J R, Chang S H, Chen C T 2003 J. Synchrotron Rad. 10 97
[17] Kamachi N, Endo K, Ohashi H 2004 AIP Conf. Proc. 705 788
[18] Susini J, Labergerie D, Zhang L 1995 Rev. Sci. Instrum. 66 2229
[19] Hardy J W, Lefebvre J E, Koliopoulos C L 1977 J. Opt. Soc. Am. 67 360
[20] Jiang W H 1997 Physics 26 73 (in Chinese) [姜文汉 1997 物理 26 73]
[21] Hardy J W, Thommpson L 2000 Phys. Today 53 69
[22] Babcick H W 1953 Publ. Astron. Soc. Pac. 65 229
[23] Liu R X, Zheng X L, Li D Y, Xia M L, Hu L F, Gao Z L, Mu Q Q, Xuan L 2014 Chin. Phys. B 23 094211
[24] Lu J, Li H, He Y, Shi G H, Zhang Y D 2011 Acta Phys. Sin. 60 034207 (in Chinese) [卢婧, 李昊, 何毅, 史国华, 张雨东 2011 60 034207]
[25] Liang C, Liao W H, Shen J X 2007 Appl. Laser 27 237 (in Chinese) [梁春, 廖文和, 沈建新 2007 应用激光 27 237]
[26] Jiang W H 1992 Opto-Electron. Eng. 19 50 (in Chinese) [姜文汉 1992 光电工程 19 50]
[27] Jiang W H, Zhang Y D, Rao C H, Ling N, Guan C L, Li M, Yang Z P, Shi G H 2011 Acta Opt. Sin. 31 0900106 (in Chinese) [姜文汉, 张雨东, 饶长辉, 凌宁, 官春林, 李梅, 杨泽平, 史国华 2011 光学学报 31 0900106]
[28] Zhang Y D, Jiang W H, Shi G H, Ling N, Dai Y, Xue L X, Yu X, Rao C J 2007 Sci. China Ser. G 37 68 (in Chinese) [张雨东, 姜文汉, 史国华, 凌宁, 戴云, 薛丽霞, 余翔, 饶学军 2007 中国科学 G 辑: 物理学 力学 天文学 37 68]
[29] Alcock S G, Sutter J P, Sawhney K J S, Hall D R, McAuley K, Sorensen T 2013 Nucl. Instrum. Meth. Phys. Res. A 710 87
[30] Susini J, Labergerie D, Hignette O 1996 Proc. SPIE 2856 130
[31] Signorato R, Hausermann D, Somayazulu M, Carre J F, Dinger U, Ota K 2004 Proc. SPIE 5193 112
[32] Signorato R, Hignette O, Goulon J 1998 J. Synchrotron Rad. 5 797
[33] Ling X D, Xue C, Liu X Y, Wang J L, Wei P F 2012 Chin. Opt. 5 337 (in Chinese) [林旭东, 薛陈, 刘欣悦, 王建立, 卫沛锋 2012 中国光学 5 337]
[34] Jiang W H 2006 Chin. J. Nat. 28 7 (in Chinese) [姜文汉 2006 自然杂志 28 7]
[35] Ning Y, Zhou H, Yu H, Rao C H, Jiang W H 2009 Chin. Phys. B 18 1089
[36] Susini J, Baker R, Krumrey M, Schwegle W, Kvick 1995 Rev. Sci. Instrum. 66 2048
[37] Susini J, Marot G, Zhang L, Ravelet R, Jagourel P 1992 Rev. Sci. Instrum. 63 489
[38] Hignette O, Freund A, Chinchio E 1997 Proc. SPIE 3152 188
[39] Hignette O, Rommeveaux A 1996 Proc. SPIE 2856 314
[40] Signorate R, Sanchez M R 1997 Proc. SPIE 3152 136
[41] Zhou H 2013 Ph. D. Dissertation (Hefei: University of Chinese Academy of Sciences) (in Chinese) [周虹 2013 博士学位论文 (合肥: 中国科学院大学)]
[42] Steinhaus E, Lipaon S G 1979 J. Opt. Soc. Am. 69 478
[43] Halevi P 1983 J. Opt. Soc. Am. 73 110
[44] Jagourel P 1990 Proc. SPIE 1237 394
[45] Kudryashov A V 1996 Opt. Eng. 35 3064
[46] Kokorowski S A 1979 J. Opt. Soc. Am. 69 181
[47] Tseng T C, Chen S J, Yeh Z C, Perng S Y, Wang D J, Kuan C K, Chen J R, Chen C T 2001 Nucl. Instrum. Meth. Phys. Res. A 467-468 294
[48] Tseng T C, Perng S Y, Lin J R, Wang S H, Chang S H 2002 Proceedings MEDSI02 Argonne, USA, September 5-6, 2002 p271
[49] Ferm J J 2007 AIP Conf. Proc. 879 501
[50] Sawhney K J S, Alcock S G, Signorato R 2010 Proc. SPIE 7803 780303
[51] Siewert F, Noll T, Schlegel T, Zeschke T, Lammert H 2004 AIP Conf. Proc. 705 847
[52] Alcock S G, Sawhney K J S, Scott S, Pedersen U, Walton R, Siewert F, Zeschke T, Noll T, Lammert H 2010 Nucl. Instrum. Meth. Phys. Res. A 616 224
[53] Sawhney K, Alcock S, Sutter J, Berujon S, Wang H C, Signorato R 2013 J. Phys.: Conf. Ser. 425 052026
[54] Matsuyama S, Kimura T, Nakamori H, Imai S, Sano Y, Kohmura Y, Tamasaku K, Yabashi M, Ishikawa T, Yamauchi K 2012 Proc. SPIE 8503 850303
[55] Nakamori H, Matsuyama S, Imai S, Kimura T, Sano Y, Kohmura Y, Tamasaku K, Yabashi M, Ishikawa T, Yamauchi K 2012 Rev. Sci. Instrum. 83 053701
[56] Kimura T, Handa S, Mimura H, Yumoto H, Yamakawa D, Matsuyama S, Inagaki K, Sano Y, Tamasaku K, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2009 Jap. J. Appl. Phys. 48 072503
[57] Kimura T, Handa S, Mimura H, Yumoto H, Yamakawa D, Matsuyama S, Sano Y, Tamasaku K, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2008 Proc. SPIE 7077 707709
[58] Nakamori H, Matsuyama S, Imai S, Kimura T, Sano Y, Kohmura Y, Tamasaku K, Yabashi M, Ishikawa T, Yamauchi K 2013 Nucl. Instrum. Meth. Phys. Res. A 710 93
[59] Signorato R 1998 Proc. SPIE 3447 20
[60] Signorato R 1999 Proc. SPIE 3773 50
[61] Qian S N, Jark W 1995 Rev. Sci. Instrum. 66 2562
[62] Takacs P, Qian S N, Colbert J 1987 Proc. SPIE 749 59
[63] Signorato R, Carre J F, Ishikawa T 2001 Proc. SPIE 4501 76
[64] Signorato R, Ishikawa T 2001 Nucl. Instrum. Meth. Phys. Res. Sect. A 467-468 271
[65] Idir M, Mercre P 2013 Adaptive Optics: Methods, Analysis and Applications 2013 Arlington, USA, June 23-27, 2013 OM3A.1
[66] Siewert F, Buchheim J, Hft T, Fiedler S, Bourenkov G, Cianci M, Signorato R 2012 Meas. Sci. Technol. 23 1
[67] Sutter J, Alcock S, Sawhney K 2012 J. Synchrotron Rad. 19 960
[68] Kimura T, Mimura H, Handa S, Yumoto H, Yokoyama H, Imai S, Matsuyama S, Sano Y, Tamasaku K, Komura Y, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2010 Rev. Sci. Instrum. 81 123704
[69] Mimura H, Yumoto H, Matsuyama S, Handa S, Kimura T, Sano Y, Yabashi M, Nishino Y, Tamasaku K, Ishikawa T, Yamauchi K 2008 Phys. Rev. A 77 015812
[70] Brujon S, Ziegler E, Cerbino R, Peverini L 2012 Phys. Rev. Lett. 108 158102
[71] Sawhney K, Wang H C, Sutter J, Alcock S, Berujon S 2013 Synchrotron Radiation News 26 17
[72] Signorato R 2004 AIP Conf. Proc. 705 812
[73] Huang R 2011 J. Synchrotron Rad. 18 930
Catalog
Metrics
- Abstract views: 7206
- PDF Downloads: 609
- Cited By: 0