-
利用中国原子能科学研究院 HI-13MV串列加速器上提供的动能为 15—55 MeV的类氦C离子分别轰击Fe, Ni, Nb和Mo金属厚靶, 采用HpGe探测器测量了K-X射线, 获得了相应的K-X射线的发射截面. 本文中由于各个靶原子外壳层电离度的不同, 类氦C离子与Fe, Ni靶原子相互作用发射的Kβ与Kα X射线的分支强度比随入射离子动能增加而减小, 而Nb, Mo靶原子发射的K-X射线分支强度比变化不明显. 利用厚靶截面公式计算了靶原子K-X射线的发射截面, 并与不同的理论模型及质子的结果进行了对比. 结果表明随类氦C离子动能的增大, Fe, Ni靶原子发射的Kβ与Kα X射线的总产生截面与考虑多电离的两体碰撞近似修正模型最为符合Nb, Mo靶原子发射的Kβ与Kα X射线的总产生截面与平面波恩近似模型的理论值最为接近. 质子与单核子C离子能量相同时, 质子比类氦C离子激发不同靶的K-X射线产生截面约小3个数量级.The physical process and experimental phenomena of the interaction between highly charged heavy ions and atoms are very complex, particularly in the intermediate energy region, because of the limitation of accelerator and existing theoretical analysis, less systematic researches, incomplete atomic data, and not so high accuracy. The research of celestial element X-ray data is more scarce and the research of X-ray data of celestial elements is even more scarce. Helium-like C ions with 15–55 MeV kinetic energy provided by the HI-13 MV series accelerator of the China Institute of Atomic Energy are used to bombard Fe, Ni, Nb and Mo thick targets. The HpGe detectors are used to measure the K-X ray emission, and the corresponding K-X ray emission cross sections are obtained. Due to the different ionization degrees of the shell layers of various target atoms, the branching intensity ratio of Kβ to Kα X rays emitted by Helium-like C ions interacting with Fe and Ni target atoms decreases with the increase of the kinetic energy of the incident ions, while the branching intensity ratio of K-X rays emitted by Nb and Mo target atoms does not change significantly. The K-X ray emission cross section of target atom is calculated by using the formula of thick target cross section, and compared with the results of different theoretical models and proton. The results show that with the increase of the kinetic energy of helium-like C ions, the total emission cross section of the Kβ and Kα X ray emitted from Fe and Ni target atoms are most consistent with the BEA correction model considering multiple ionization, and the total emission cross section of Kβ and Kα X ray emitted from Nb and Mo target atoms are closest to the theoretical values of PWBA model. When the energy of proton is the same as that of single nucleon C ion, the cross section of K-X ray produced by proton is about three orders of magnitude smaller than that produced by helium-like C ion.
-
Keywords:
- X-ray /
- ion beam /
- cross section /
- binary-encounter approximation /
- planar Born approximation
[1] Gerjuoy E 1961 Rev. Mod. Phys. 33 544
Google Scholar
[2] 曾谨言 2001 量子力学导论(第二版)(北京: 北京大学出版社)第287页
Zeng J Y 2001 Introduction to Quantum Mechanics (2nd Ed.) (Beijing: Peking University Press) p287
[3] Bethe H A 1950 Rev. Mod. Phys. 22 213
Google Scholar
[4] Kocbach L, Hansteen J M, Gundersen R 1980 Nucl. Instrum. Methods. B 169 281
Google Scholar
[5] Liu Z, Cipolla S J 1996 Comp. Phys. Comm. 97 315
Google Scholar
[6] Gryziński M 1965 Phys. Rev. 138 A336
[7] McGuire J H, Richard P 1973 Phys. Rev. A 8 1374
[8] Brandt W, Lapicki G 1979 Phys. Rev. A 20 465
Google Scholar
[9] Basbas G, Brandt W, Laubert R 1973 Phys. Rev. A 7 983
Google Scholar
[10] Basbas G, Brandt W, Laubert R 1978 Phys. Rev. A 17 1655
Google Scholar
[11] Gray T J, Cocke C L, Gardner R K 1977 Phys. Rev. A 16 1907
Google Scholar
[12] Lutz H O, Stein J, Datz S, Moak C D 1972 Phys. Rev. Lett. 28 8
Google Scholar
[13] Brandt W, Laubert R, Mourinot M 1973 Phys. Rev. Lett. 30 358
Google Scholar
[14] Timmerman R, Weeren R J V, Botteon A, Röttgering H J A, McNamara B R, Sweijen F, Bîrzan L, Morabito L K 2022 Astron. Astrophys. 668 A
[15] Kimura K, Urushihara D, Kondo R, Yamamoto Y, Ang A K R, Asaka T, Happo N, Hagihara T, Matsushita T, Tajiri H, Miyazaki H, Ohara K, Iwata M, Hayashi K 2021 Phys. Rev. B 104 144101
Google Scholar
[16] Lalande M, Abdelmouleh M, Ryszka M, Vizcaino V, Rangama J, Méry A, Durantel F, Schlathölter T, Poully J C 2018 Phys. Rev. A 98 062701
Google Scholar
[17] Coskun A F, Han G J, Ganesh S, Chen S Y, Clavé X R, Harmsen S, Jiang S, Schürch C M, Bai Y H, Hitzman C, Nolan G P 2021 Nat. Commun. 12 789
Google Scholar
[18] Collaboration H 2017 Nature 551 478
Google Scholar
[19] Paul H, Sacher J 1989 Atom. Data Nucl. Data 42 105
Google Scholar
[20] Yu Y C, McNeir M R, Weathers D L, Duggan J L, McDaniel F D, Lapicki G 1991 Phys. Rev. A 44 5702
Google Scholar
[21] Bertol A P L, Hinrichs R, Vasconcellos M A Z 2015 Nucl. Instr. Meth. B 365 8
Google Scholar
[22] Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707
Google Scholar
[23] Chen X M, Shao J X, Yang Z H, Zhang H Q, Cui Y, Xu X, Xiao G Q, Zhao Y T, Zhang X A, Zhang Y P 2007 Eur. Phys. J. D 41 281
Google Scholar
[24] Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79
Google Scholar
[25] Santos-Lleo M, Schartel N, Tananbaum H, Tucker W, Weisskopf M C 2009 Nature 462 997
Google Scholar
[26] Wilkes B J, Tucker W, Schartel N, Santos-Lleo M 2022 Nature 606 261
Google Scholar
[27] Wheeler R M, Chaturvedi R P, Duggan J L, Tricomi J, Miller P D 1976 Phys. Rev. A 13 958
Google Scholar
[28] Bambynek W, Crasemann B, Fink R W, et al. 1972 Rev. Mod. Phys. 44 716
Google Scholar
[29] Peterson R C 2011 Astrophys. J. 742 21
Google Scholar
[30] Honda S, Aoki W, Ishimaru Y, Wanajo S, Ryan S G 2006 Astrophys. J. 643 1180
Google Scholar
[31] Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C) 2009 X-Ray Data Booklet (Berkeley: Lawrence Berkeley National Laboratory University of California) pp10–12
[32] Garcia J D, Fortner R J, Kavanagh T M 1973 Rev. Mod. Phys. 45 111
Google Scholar
[33] Zhang H Q, Chen X M, Yang Z H, Xu J K, Cui Y, Shao J X, Zhang X, Zhao Y T, Zhang Y P, Xiao G Q 2010 Nucl. Instr. Meth. B 268 1564
Google Scholar
[34] Khan M R, Crumpton D 1978 Appl. Phys. 15 335
Google Scholar
[35] McKnight R H, Thornton S T, Karlowicz R R 1975 Nucl. Instr. Methods. 123 1
Google Scholar
[36] Open Program The Stopping and Range of Ions in Matter, Ziegler J F, Ziegler M D, Biersack J P http://www.srim.org/ [2008-04
[37] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 70 023201
Google Scholar
Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta. Phys. Sin. 70 023201
Google Scholar
[38] Burch D, Ingalls W B, Risley J S, Heffner R 1972 Phys. Rev. Lett. 29 1719
Google Scholar
[39] Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instr. Meth. B 195 233
Google Scholar
[40] 周贤明, 赵永涛, 程锐, 王兴, 雷瑜, 孙渊博, 王瑜玉, 徐戈, 任洁茹, 张小安, 梁昌慧, 李耀宗, 梅策香, 肖国青 2013 62 083201
Google Scholar
Zhou X M, Zhao Y T, Cheng R, Sun Y B, Wang X, Lei Y, Wang Y Y, Xu G, Ren J R, Zhang X A, Liang C H, Li Y Z, Mei C X, Xiao G Q 2013 Acta. Phys. Sin. 62 083201
Google Scholar
[41] Zhou X M, Zhao Y T, Cheng R, Wang Y Y, Lei Y, Wang X, Sun Y B 2013 Nucl. Instrum. Meth. B 299 61
Google Scholar
-
-
[1] Gerjuoy E 1961 Rev. Mod. Phys. 33 544
Google Scholar
[2] 曾谨言 2001 量子力学导论(第二版)(北京: 北京大学出版社)第287页
Zeng J Y 2001 Introduction to Quantum Mechanics (2nd Ed.) (Beijing: Peking University Press) p287
[3] Bethe H A 1950 Rev. Mod. Phys. 22 213
Google Scholar
[4] Kocbach L, Hansteen J M, Gundersen R 1980 Nucl. Instrum. Methods. B 169 281
Google Scholar
[5] Liu Z, Cipolla S J 1996 Comp. Phys. Comm. 97 315
Google Scholar
[6] Gryziński M 1965 Phys. Rev. 138 A336
[7] McGuire J H, Richard P 1973 Phys. Rev. A 8 1374
[8] Brandt W, Lapicki G 1979 Phys. Rev. A 20 465
Google Scholar
[9] Basbas G, Brandt W, Laubert R 1973 Phys. Rev. A 7 983
Google Scholar
[10] Basbas G, Brandt W, Laubert R 1978 Phys. Rev. A 17 1655
Google Scholar
[11] Gray T J, Cocke C L, Gardner R K 1977 Phys. Rev. A 16 1907
Google Scholar
[12] Lutz H O, Stein J, Datz S, Moak C D 1972 Phys. Rev. Lett. 28 8
Google Scholar
[13] Brandt W, Laubert R, Mourinot M 1973 Phys. Rev. Lett. 30 358
Google Scholar
[14] Timmerman R, Weeren R J V, Botteon A, Röttgering H J A, McNamara B R, Sweijen F, Bîrzan L, Morabito L K 2022 Astron. Astrophys. 668 A
[15] Kimura K, Urushihara D, Kondo R, Yamamoto Y, Ang A K R, Asaka T, Happo N, Hagihara T, Matsushita T, Tajiri H, Miyazaki H, Ohara K, Iwata M, Hayashi K 2021 Phys. Rev. B 104 144101
Google Scholar
[16] Lalande M, Abdelmouleh M, Ryszka M, Vizcaino V, Rangama J, Méry A, Durantel F, Schlathölter T, Poully J C 2018 Phys. Rev. A 98 062701
Google Scholar
[17] Coskun A F, Han G J, Ganesh S, Chen S Y, Clavé X R, Harmsen S, Jiang S, Schürch C M, Bai Y H, Hitzman C, Nolan G P 2021 Nat. Commun. 12 789
Google Scholar
[18] Collaboration H 2017 Nature 551 478
Google Scholar
[19] Paul H, Sacher J 1989 Atom. Data Nucl. Data 42 105
Google Scholar
[20] Yu Y C, McNeir M R, Weathers D L, Duggan J L, McDaniel F D, Lapicki G 1991 Phys. Rev. A 44 5702
Google Scholar
[21] Bertol A P L, Hinrichs R, Vasconcellos M A Z 2015 Nucl. Instr. Meth. B 365 8
Google Scholar
[22] Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707
Google Scholar
[23] Chen X M, Shao J X, Yang Z H, Zhang H Q, Cui Y, Xu X, Xiao G Q, Zhao Y T, Zhang X A, Zhang Y P 2007 Eur. Phys. J. D 41 281
Google Scholar
[24] Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79
Google Scholar
[25] Santos-Lleo M, Schartel N, Tananbaum H, Tucker W, Weisskopf M C 2009 Nature 462 997
Google Scholar
[26] Wilkes B J, Tucker W, Schartel N, Santos-Lleo M 2022 Nature 606 261
Google Scholar
[27] Wheeler R M, Chaturvedi R P, Duggan J L, Tricomi J, Miller P D 1976 Phys. Rev. A 13 958
Google Scholar
[28] Bambynek W, Crasemann B, Fink R W, et al. 1972 Rev. Mod. Phys. 44 716
Google Scholar
[29] Peterson R C 2011 Astrophys. J. 742 21
Google Scholar
[30] Honda S, Aoki W, Ishimaru Y, Wanajo S, Ryan S G 2006 Astrophys. J. 643 1180
Google Scholar
[31] Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C) 2009 X-Ray Data Booklet (Berkeley: Lawrence Berkeley National Laboratory University of California) pp10–12
[32] Garcia J D, Fortner R J, Kavanagh T M 1973 Rev. Mod. Phys. 45 111
Google Scholar
[33] Zhang H Q, Chen X M, Yang Z H, Xu J K, Cui Y, Shao J X, Zhang X, Zhao Y T, Zhang Y P, Xiao G Q 2010 Nucl. Instr. Meth. B 268 1564
Google Scholar
[34] Khan M R, Crumpton D 1978 Appl. Phys. 15 335
Google Scholar
[35] McKnight R H, Thornton S T, Karlowicz R R 1975 Nucl. Instr. Methods. 123 1
Google Scholar
[36] Open Program The Stopping and Range of Ions in Matter, Ziegler J F, Ziegler M D, Biersack J P http://www.srim.org/ [2008-04
[37] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 70 023201
Google Scholar
Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta. Phys. Sin. 70 023201
Google Scholar
[38] Burch D, Ingalls W B, Risley J S, Heffner R 1972 Phys. Rev. Lett. 29 1719
Google Scholar
[39] Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instr. Meth. B 195 233
Google Scholar
[40] 周贤明, 赵永涛, 程锐, 王兴, 雷瑜, 孙渊博, 王瑜玉, 徐戈, 任洁茹, 张小安, 梁昌慧, 李耀宗, 梅策香, 肖国青 2013 62 083201
Google Scholar
Zhou X M, Zhao Y T, Cheng R, Sun Y B, Wang X, Lei Y, Wang Y Y, Xu G, Ren J R, Zhang X A, Liang C H, Li Y Z, Mei C X, Xiao G Q 2013 Acta. Phys. Sin. 62 083201
Google Scholar
[41] Zhou X M, Zhao Y T, Cheng R, Wang Y Y, Lei Y, Wang X, Sun Y B 2013 Nucl. Instrum. Meth. B 299 61
Google Scholar
计量
- 文章访问数: 2494
- PDF下载量: 34
- 被引次数: 0