-
针对空天一体化发展中临近空间飞行器在卫星拒止下的自主导航难题,脉冲星导航作为一种极具前景的解决方案,其可否应用取决于临近空间X射线的传输特性。本文首先分析了电离层内X射线与带电离子、自由电子等物质的相互作用,给出了反射、散射及吸收作用对1-100 keV能段X射线的质量衰减系数。然后基于NRLMSIS 2.1模型和IRI-2020模型建立了X射线在临近空间传输的分层模型,给出了1-30 keV的X射线在60-100 km的传输效率和流量获取方法。最后分析了传输效率在不同季节与纬度、昼夜等条件下的变化规律,阐述了传输效率的分布特征。结果表明,以南极中山站为例,10 keV能量的X射线,在75 km以上时传输效率均高于83.96%。本研究为X射线脉冲星导航在临近空间的应用研究提供了数据支撑。In the context of integrated space-air development, the near-space aircraft is facing the challenge of autonomous navigation under conditions of satellite denial. Pulsar navigation is a promising solution, and whether it can be applied depends on the transmission characteristics of X-rays in near-space. Firstly, this paper analyzes the interaction between X-rays and charged ions, free electrons and other substances in the ionosphere, and gives the mass attenuation coefficients of reflection, scattering and absorption to X-rays with energy of 1-100 keV. Then, based on the NRLMSIS 2.1 and IRI-2020 models, a stratified model for X-ray transmission in near-space is established, and provides the transmission efficiency and flux acquisition method for 1-30 keV X-rays in 60-100 km. Finally, we analyzes the variations in transmission efficiency under different season, latitude and day-night, and describes the distribution characteristics of transmission efficiency. Analysis indicates that: (1) Photoelectric absorption plays a dominant role, while both coherent and incoherent scattering have relatively minor impacts and the reflection effect is extremely weak and negligible for X-rays applicable to pulsar navigation; (2) The transmission efficiency exhibits a significant positive correlation with X-ray energy and altitude, and it usually surpasses 80% when the X-ray energy exceeds 10 keV; (3) The transmission efficiency exhibits distinct annual variation characteristics in the Arctic and Antarctic regions and subtle semi-annual variation characteristics in the equatorial region. It peaks in the winter hemisphere and reaches a minimum in the summer hemisphere, with the amplitude of its fluctuations in polar regions far exceeding that in the equatorial region. Additionally it also shows periodic daily variations with daytime decreases and nighttime increases, and the amplitude of diurnal fluctuations being no more than 0.82%. The results indicate that the transmission efficiency peaks during the early morning of the Antarctic winter for 10 keV X-rays at 75 km. Taking Antarctic China Zhongshan Station as an example, it can reach up to 93.57%, which represents a 9.61% increase over the summer minimum of 83.96%. This study provides crucial data for supporting the applications of X-ray pulsar navigation in near-space.
-
Keywords:
- X-ray /
- Near space /
- Transmission characteristics /
- Pulsar
-
[1] Nie W, Luo S B, Feng S J, Zhuang F C 2012J. Natl. Univ. Def. Technol. 34 107(in Chinese)[聂万,罗世彬,丰松江,庄逢辰2012国防科技大学学报34 107]
[2] Nan Z H, Liu D Y, Dong M, Liang W N, Zhang X W, Ma Y L, Guan Y 2024Acta Aeronaut. Astronaut. Sin. 45 358(in Chinese)[南子寒,刘大禹,董明,梁文宁,赵雪薇,马伊琳,关瑶2024航空学报45 358]
[3] Yang J L, Jiang C W, Zhu M, Wang Z L 2024Strateg. Stud. of CAE. 26 128(in Chinese)[杨君琳,蒋崇文,祝明,王自力2024中国工程科学26 128]
[4] Han W, Wang·N,·Wang J B, Yuan·J P,·He D L 2019Astrophys. Space Sci. 364 48
[5] Kašpárek T, Chudý P 2024Aerosp. 11 839
[6] Zheng W, Wang Y S, Wang Y D 2024Acta Aeronaut. Astronaut. Sin. 45271(in Chinese)[郑伟,王禹淞,姜坤,王奕迪2024航空学报45271]
[7] Yan L L, Ge M Y, Tuo Y L, Zhou Q Y, Ye W T, Zheng S J, Han D W 2023Acta Aeronaut. Astronaut. Sin. 44 177(in Chinese)[闫林丽,葛明玉,庹攸隶,周庆勇,叶文韬,郑世界,韩大炜2023航空学报44 177]
[8] Han W, Wang J B, Wang N, Sun G W, He D L 2020Exp. Astron. 49 43
[9] Deng Z L, Li X D, Gao Z F, Shao Y 2021ApJ. 909 174
[10] Wei Z Q 2025Acta Geod. Cartogr. Sin. 54 207(in Chinese)[魏子卿2025测绘学报54 207]
[11] Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016MNRAS 456 55
[12] Wang W, Xu R X 2025 Univ. 11 11
[13] Rigoselli M, Mereghetti S, Halpern J P, Gotthelf E V, Bassa C G 2024ApJ 976 228
[14] Shi Y Q, Li L S, Zuo F C, Chen J W, Mei Z W 2023Navig. Posit. Timing 10 1(in Chinese)[石永强,李连升,左富昌,陈建武,梅志武2023导航定位与授时10 1]
[15] Wen Z G, Yuen R, Wang N, Tu Z Y, Yan Z, Yuan J P, Yan W M, Chen J L, Wang H G, Shen Z Q, Wang Z, Yang W J, Duan X F, Zhang Y F, Wang Y B, Mao J W 2021ApJ 918 57
[16] Deng Z L, Gao Z F, Li X D, Shao Y 2020ApJ 892 4
[17] Gao Z F, Wang N, Shan H, Li X D, Wang W 2017ApJ 84919
[18] Pei S P, Zhang X W 2023Sci. Technol. Vis. 14 13(in Chinese)[裴松鹏,张晓婉2023科技视界1413]
[19] He D L, Yuan J P, Wen Z G, Sun G W, Ma W L, Zhu D J, Wang H 2025Astron. Nachr. https://doi.org/10.1002/asna.20250023
[20] Jiang K, Jiao W H, He X L, Liu Y, Wang Y D, Zhang X Y, Guo J 2023Acta Aeronaut. Astronaut. Sin. 4497(in Chinese)[姜坤,焦文海,郝晓龙,刘莹,王奕迪,张新源,国际2023航空学报44 97]
[21] Wen Z G, Yuan J P, Wang N, Li D, Chen J L, Wang P, Wu Q D, Yan W M, Yuen R, Wang Z, Tedila H M, Wang H G, Zhu W W, Niu J R, Miao C C, Xue M Y, Duan X F, Xiang B B, He D L 2022ApJ. 929 587
[22] Li B P, Gao Z F 2023Astron. Nachr. 344 e20220111
[23] Ran S C, Yang Z N, Li S C, Xie T H, Ma X 2024Aerosp. Shanghai (Chin.& Engl.). 41 238(in Chinese)[冉山川,杨子宁,李思成,解天昊,马辛2024上海航天(中英文)41 238]
[24] Han M N, Tong M L 2023Acta Phys. Sin. 72 423(in Chinese)[韩孟纳,童明雷2023 72 423]
[25] Su J Y, Fang H Y, Bao W M, Sun H F, Zhao L 2022Phys. Sin. 71 393(in Chinese)[苏剑宇,方海燕,包为民,孙海峰,赵良2022 71 393]
[26] Wen Z G, Wang N, Yuan J P, Yan W M, Manchester R N, Yuen R, Gajjar V 2016A&A 592 A127
[27] Yu D C, Li H T, Li B Q, Liu Y N 2023Chin. J. Space Sci. 43 661(in Chinese)[余道淳,李海涛,李保权,刘亚宁2023空间科学学报43 661]
[28] Henke B L, Gullikson E M, Davis J C 1993At. Data Nucl. Data Tables 54 181
[29] Gendreau K https://www.techbriefs.com/component/content/article/2591-dr-keith-gendreau-physicist-goddard-space-flight-center-greenbelt-md[2025-3-17]
[30] Li H, Tang X B, Hang S, Liu Y P, Chen D 2017J. Appl. Phys 121 123101
[31] Zhou W 2020M.S. Thesis(Nanjing:Nanjing University of Aeronautics and Astronautics)(in Chinese)[周围2020硕士学位论文(南京:南京航空航天大学)]
[32] Sun H F 2015Ph. D. Dissertation(Xi'an:Xidian University)(in Chinese)[孙海峰2015博士学位论文(西安:西安电子科技大学)]
[33] Sun H F, Bao W M, Fang H Y, Li X P 2014Acta Phys. Sin. 63 441(in Chinese)[孙海峰,包为民,方海燕,李小平2014 63 441]
[34] Shen L R, Li X P, Sun H F, Fang H Y, Xue M F, Zhu J P 2016China Satellite Navigation Conference (CSNC) Changsha, Hunan, May 18, 2016 p611
[35] Zhou Q Y, Zhang J K, Jia X L, Yan L L, Fan S J 2023GNSS World of China 48 63(in Chinese)[周庆勇,张健康,贾小林,闫林丽,樊少娟2023全球定位系统48 63]
[36] Niu Y T, Zhang A Q, Zhao G G, Ding Y L, Cao Y, Piao J L 2025J. Henan Norm. Univ. Nat. Sci. 53 151(in Chinese)[牛有田,张安琪,赵歌歌,丁玉玲,曹渊,朴金龙2025河南师范大学学报(自然科学版)53 151]
[37] Yue X A 2008Ph. D. Dissertation(Wuhan:Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences)(in Chinese)[乐新安2008博士学位论文(武汉:中国科学院研究生院(武汉物理与数学研究所))]
[38] Ma B K 2013Ph. D. Dissertation(Xi'an:Xidian University)(in Chinese)[马保科2013博士学位论文(西安:西安电子科技大学)]
[39] Wang Y 2021M.S. Thesis(Beijing:China Academy of Electronics and Information Technology)(in Chinese)[王严2021硕士学位论文(北京:中国电子科技集团公司电子科学研究院)]
[40] Chen B Y 2012M.S. Thesis(Changsha:Central South University)(in Chinese)[陈必焰2012硕士学位论文(长沙:中南大学)]
[41] Li Z Z 2023Ph.D. Dissertation(Hefei:University of Science and Technology of China)(in Chinese)[李泽众2023博士学位论文(合肥:中国科学技术大学)]
[42] Niu Y J 2024M.S. Thesis(Zhengzhou:Zhengzhou University of Light Industry)(in Chinese)[牛月娟2024硕士学位论文(郑州:郑州轻工业大学)]
[43] zhao X W 2022Ph.D. Dissertation(Hangzhou:Zhejiang University)(in Chinese)[张雪薇2022博士学位论文(杭州:浙江大学)]
[44] Yu C, Shen G Z, Gu B, Cheng G S 2013J. Nanjing Univ. Inf. Sci Technol. 5 379(in Chinese)[虞超,沈国柱,顾斌,程国生2013南京信息工程大学学报(自然科学版)5 379]
[45] Zou W, Hou D T, Xing C W Shao Y 2006 R. Eng. 11 50(in Chinese)[邹伟,侯德亭,邢朝伟,邵颖2006无线电工程11 50]
[46] Mou H 2017Ph.D. Dissertation(Beijing:University of Chinese Academy of Sciences)(in Chinese)[牟欢2017博士学位论文(北京:中国科学院大学)]
[47] Su t 2020Ph.D. Dissertation(Beijing:University of Chinese Academy of Sciences)(in Chinese)[苏桐2020博士学位论文(北京:中国科学院大学)]
[48] Dai B 2010Coll. Phys. 2930(in Chinese)[代波2010大学物理2930]
[49] Zhou R F 2003M.S. Thesis(Chongqing:Chongqing University)(in Chinese)[周日峰2003硕士学位论文(重庆:重庆大学)]
[50] Ouyang J M, Ma Y Y, Shao F Q, Zou D B 2012Acta Phys. Sin. 61 135(in Chinese)[欧阳建明,马燕云,邵福球,邹德滨2012 61 135]
[51] Berger M J, Hubbell J H, Seltzer S M, Chang J, Coursey J S, Sukumar R, Zucker D S, Olsen K https://www.nist.gov/pml/xcom-photon-cross-sections-database[2025-3-17]
[52] Churazov E, Sazonov S, Sunyaev R, Revnivtsev M 2008MNRAS 385 719
[53] Bilitza D, Pezzopane M, Truhlik V, Altadill D, Reinisch B W, Pignalberi A 2022Rev. Geophys. 60 e2022RG000792
[54] Servan-Schreiber N, Aggarwal M, Huang Y, Kang M, Shaker A, Bilitza D 2025Adv. Space Res. 75 4217
[55] Emmert J T, Jones M Jr, Siskind D E, Drob D P, Picone J M, Stevens M H, Bailey S M, Bender S, Bernath P F, Funke B, Hervig M E, Pérot K 2022J. Geophys. Res. Space Phys 127 e2022JA030896
[56] Briesmeister J F https://api.semanticscholar.org/CorpusID:123810257[2025-3-17]
[57] Wang Y, Tan G X, Zhang X H 2023J. Shenyang Inst. Eng.(Nat. Sci.) 19 1(in Chinese)[王禹,覃国秀,张小辉2023沈阳工程学院学报(自然科学版)19 1]
[58] Sheikh S I 2005Ph.D. Dissertation (Maryland:University of Maryland)
[59] Su J Y, Fang H Y, Bao W M, Sun H F, Shen L R, Zhao L 2020Acta Astronaut. 166 93
[60] Weng L B 2019Ph. D. Dissertation(Hefei:University of Science and Technology of China)(in Chinese)[翁利斌2019博士学位论文(合肥:中国科学技术大学)]
[61] Li B, Cui R F, Weng L B 2024 Chin. J. Space Sci. 44 60(in Chinese)[李波,崔瑞飞,翁利斌2024空间科学学报44 60]
[62] He L S, Liu R Y, Liu S L, Liu Y H 2000Chin. J. Geophys. 43 289(in Chinese)[贺龙松,刘瑞源,刘顺林,刘勇华2000地球 43 289]
[63] Gao J F, Zhao H S, Xu Z H, Xu Z W, Feng J, Li H, Ma Z Z 2018Chin. J. Radio Sci. 33 701(in Chinese)[高敬帆,赵海生,徐朝辉,许正文,冯杰,李辉,马征征2018电波科学学报33 701]
[64] Liu L B, Chen Y D, Zhang R L, Le H J, Zhang H 2021Rev. Geophys. Planet. Phys. 52 647(in Chinese)[刘立波,陈一定,张瑞龙,乐会军,张辉2021地球与行星物理论评52 647
[65] Zeng D D, Wan T, Li S H 2022Chin. J. Theor. Appl. Mech 54 2984(in Chinese)[曾丹丹,万田,李帅辉2022力学学报54 2984]
计量
- 文章访问数: 26
- PDF下载量: 0
- 被引次数: 0