Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of discharge parameters on pulsed discharge of coaxial gun in deflagration mode

Zhao Chong-Xiao Qi Liang-Wen Yan Hui-Jie Wang Ting-Ting Ren Chun-Sheng

Citation:

Influence of discharge parameters on pulsed discharge of coaxial gun in deflagration mode

Zhao Chong-Xiao, Qi Liang-Wen, Yan Hui-Jie, Wang Ting-Ting, Ren Chun-Sheng
PDF
HTML
Get Citation
  • Coaxial gun can produce high-speed and high-density plasma jet and has some potential applications in many research areas such as space thruster, space debris impact simulation, nuclear fusion, and material processing. The coaxial gun is usually composed of a pair of coaxial cylindrical and hollow electrodes. The pulsed discharge of coaxial gun has two discharge modes, i.e., deflagration mode and pre-fill mode. Compared with the pre-fill mode, deflagration discharge mode can induce a plasma jet with few impurities, high collimation, and fast speed. In this paper, the effect of gas injection mass and discharge voltage on the discharge characteristic of deflagration mode are studied with electrical and optical diagnosis including the emission spectrum, plasma velocity and discharge current measurements. The experimental results show that when the gas injection mass is relatively low, such as 1.4 mg, many plasma clusters eject from the muzzle. As the gas flowing into the coaxial gun bottom increases, the plasma density increases and the jet velocity decreases. Eventually, when the gas injection mass increases to 2.6 mg, one cluster of plasma is found and ejects from the muzzle of the gun. In the discharge process, as a small quantity of gas flows into the bottom of the coaxial gun through the electromagnetic valve continuously, new current paths will be generated at the bottom of the coaxial gun and move forward. This results in the observation of multiple plasma jet at the exit of the coaxial gun. It is noted that the plasma densities are different for different gas mass flowing into coaxial gun bottom, but the currents have little effect in the first discharge half cycle due to the small plasma inductance in discharge circuit. Meanwhile, the plasma characteristics under different voltages with the fixed gas mass of 2.6 mg flowing into the coaxial gun bottom are experimentally measured. The results show that the plasma density and speed increase with voltage increasing, which is attributed to the stronger discharge current and larger self-induced Lorentz force. More neutral particles can be ionized into plasma with discharge voltage increasing, and the transport speed becomes faster under the enhanced force. In addition, the multiple ionization phenomena are observed again when the discharge voltage increases from 5 kV to 8 kV. This study provides an insight into how to better apply the coaxial gun discharge plasma to practical engineering field. The article further verifies the phenomenon of multiple discharges at the bottom of the coaxial gun by changing the charging capacitance and analyzing the magnetic probe signals.
      Corresponding author: Ren Chun-Sheng, rchsh@dlut.edu.cn
    • Funds: Project supported by National Key R&D Program of China (Grant No. 2017YFE0301206), the National Natural Science Foundation of China (Grant No. 51807020), and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT18RC(3)019).
    [1]

    Marshall J 1960 Phys. Fluids 3 134

    [2]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [3]

    杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113

    [4]

    Witherspoon F D, Case A, Messer S J, B R, Phillips M W, Brockington S, Elton R 2009 Rev. Sci. Instrum. 80 363

    [5]

    Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769Google Scholar

    [6]

    Mather J W 1965 Phys. Fluids 8 366Google Scholar

    [7]

    Mather J W 1963 Phys. Fluids 7 S28

    [8]

    Cheng D Y 1971 AIAA J. 9 1681Google Scholar

    [9]

    李宏伟, 韩建伟, 吴逢时, 蔡明辉, 张振龙 2014 63 119601Google Scholar

    Li H W, Han J W, Wu F S, Cai M H, Zhang Z L 2014 Acta Phys. Sin. 63 119601Google Scholar

    [10]

    李宏伟, 韩建伟, 蔡明辉, 吴逢时 2013 62 229601Google Scholar

    Li H W, Han J W, Cai M H, Wu F S 2013 Acta Phys. Sin. 62 229601Google Scholar

    [11]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [12]

    Turchi P J, Roderick N F, Degnan J H, Frese M H, Amdahl D J 2008 IEEE Trans. Plasmas Sci. 36 92Google Scholar

    [13]

    Schoenberg K F, Gerwin R A, Moses Jr R W, Scheuer J T, Wagner H P 1998 Phys. Plasmas 5 2090Google Scholar

    [14]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [15]

    Poehlmann F R 2010 Ph. D Dissertation (Stamford: Stanford University)

    [16]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [17]

    Rabiński M, Zdunek K 2003 Vacuum 70 303Google Scholar

    [18]

    Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar

    [19]

    Loebner K T K, Wang B C, Poehlmann F R, Watanabe Y, Cappelli M A 2014 IEEE Trans. Plasmas Sci. 42 2500Google Scholar

    [20]

    Poehlmann F R, Cappelli M A, Rieker G B 2010 Phys. Plasmas 17 333

    [21]

    Rieker G B, Poehlmann F R, Cappelli M A 2013 Phys. Plasmas 20 07311

    [22]

    Subramaniam V, Underwood T C, Raja L L, Cappelli M A 2018 Plasma. Sources Sci. T. 27 025016Google Scholar

    [23]

    Ashkenazy J, Kipper R, Caner M 1991 Physical Rev. A 43 568Google Scholar

    [24]

    Wiechula J, Hock C, Iberler M, Manegold T, Schonlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

  • 图 1  实验装置原理图

    Figure 1.  Schematic diagram of experimental equipment

    图 2  (a)—(d)分别为电压为5 kV, 进气量为1.4, 2.1, 2.3, 2.6 mg的电流信号与光电流信号

    Figure 2.  Current and photocurrent signals for 5 kV voltage at gas in the coaxial gun bottom of (a) 1.4 mg, (b) 2.1 mg, (c) 2.3 mg and (d) 2.6 mg, respectively

    图 3  电压5 kV时等离子体输运速度随着进气量的变化

    Figure 3.  The velocity versus with the gas which enters in the coaxial gun bottom with the discharge voltage 5 kV

    图 4  放电电压5 kV、进气量1.4 mg、光谱仪曝光时间3 s光栅设置为1200 g/mm时的Hβ谱线

    Figure 4.  The Hβ line of the discharge voltage 5 kV, the gas which enters in the coaxial gun bottom 1.4 mg, the exposure time of the spectrometer 3 s, and the grating set at 1200 g/mm

    图 5  进气量1.4 mg、放电电压5 kV时, Hβ谱线及其拟合曲线, 展宽为0.089 nm

    Figure 5.  Hβ spectrum and its Lorenz fitting line, spectrum broadening is 0.089 nm

    图 6  使用氦氖激光器测量得到的仪器展宽, 得到的展宽为0.036 nm

    Figure 6.  Instrument broadening measured using helium laser, spectrum broadening is 0.036 nm

    图 7  放电电压5 kV时电子密度随进气量变化

    Figure 7.  Electron density versus the gas with the discharge voltage of 5 kV

    图 8  放电电压5 kV进气量分别为1.4 mg和2.6 mg条件下的电流信号和磁信号

    Figure 8.  The current signal and magnetic signal for for 5 kV voltage at gas in the coaxial gun bottom of (a) 1.4 mg and (d) 2.6 mg, respectively

    图 9  (a)—(d)分别为进气量2.6 mg, 电压为5, 6, 7, 8 kV的电流信号与光电流信号

    Figure 9.  Current and photocurrent signals for 2.6 mg gas in the coaxial gun bottom at voltages of (a) 5 kV, (b) 6 kV, (c) 7 kV and (d) 8 kV, respectively

    图 10  进气量2.6 mg速度随着电压的变化

    Figure 10.  The velocity versus discharge voltage with the gas which enters in the coaxial gun bottom of 2.6 mg

    图 11  进气量2.6 mg时电子密度随着电压的变化

    Figure 11.  The electron density versus discharge voltage with the gas which enters in the coaxial gun bottom of 2.6 mg

    图 12  数码相机拍摄的同轴枪放电图片, (a), (b)分别为进气量5.5 mg, 电压为5 kV和8 kV时的图片

    Figure 12.  The coaxial gun discharge pictures taken by the digital camera, the exposure time is 1 s, with the gases which enter in the coaxial gun bottom of 5.5 mg and the discharge voltage of (a) 5 kV and (b) 8 kV respectively

    图 13  (a), (b)分别为放电电压5 kV、送气量1.4 mg、电容分别为180 μF和120 μF的电流信号和光电流信号

    Figure 13.  Current signals and photocurrent signals for a discharge voltage of 5 kV, 1.4 mg gas in the coaxial gun bottom, and capacitances of (a) 180 μF and (b) 120 μF, respectively

    图 14  (a), (b)分别为电流幅值52 kA、送气量1.4 mg、电容分别为180 μF和120 μF的电流信号和光电流信号

    Figure 14.  Current signal and photocurrent signal for current amplitude of 52 kA, 1.4 mg gas in the coaxial gun bottom, and capacitance of (a) 180 μF and (b) 120 μF, respectively

    Baidu
  • [1]

    Marshall J 1960 Phys. Fluids 3 134

    [2]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [3]

    杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113

    [4]

    Witherspoon F D, Case A, Messer S J, B R, Phillips M W, Brockington S, Elton R 2009 Rev. Sci. Instrum. 80 363

    [5]

    Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769Google Scholar

    [6]

    Mather J W 1965 Phys. Fluids 8 366Google Scholar

    [7]

    Mather J W 1963 Phys. Fluids 7 S28

    [8]

    Cheng D Y 1971 AIAA J. 9 1681Google Scholar

    [9]

    李宏伟, 韩建伟, 吴逢时, 蔡明辉, 张振龙 2014 63 119601Google Scholar

    Li H W, Han J W, Wu F S, Cai M H, Zhang Z L 2014 Acta Phys. Sin. 63 119601Google Scholar

    [10]

    李宏伟, 韩建伟, 蔡明辉, 吴逢时 2013 62 229601Google Scholar

    Li H W, Han J W, Cai M H, Wu F S 2013 Acta Phys. Sin. 62 229601Google Scholar

    [11]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [12]

    Turchi P J, Roderick N F, Degnan J H, Frese M H, Amdahl D J 2008 IEEE Trans. Plasmas Sci. 36 92Google Scholar

    [13]

    Schoenberg K F, Gerwin R A, Moses Jr R W, Scheuer J T, Wagner H P 1998 Phys. Plasmas 5 2090Google Scholar

    [14]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [15]

    Poehlmann F R 2010 Ph. D Dissertation (Stamford: Stanford University)

    [16]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [17]

    Rabiński M, Zdunek K 2003 Vacuum 70 303Google Scholar

    [18]

    Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar

    [19]

    Loebner K T K, Wang B C, Poehlmann F R, Watanabe Y, Cappelli M A 2014 IEEE Trans. Plasmas Sci. 42 2500Google Scholar

    [20]

    Poehlmann F R, Cappelli M A, Rieker G B 2010 Phys. Plasmas 17 333

    [21]

    Rieker G B, Poehlmann F R, Cappelli M A 2013 Phys. Plasmas 20 07311

    [22]

    Subramaniam V, Underwood T C, Raja L L, Cappelli M A 2018 Plasma. Sources Sci. T. 27 025016Google Scholar

    [23]

    Ashkenazy J, Kipper R, Caner M 1991 Physical Rev. A 43 568Google Scholar

    [24]

    Wiechula J, Hock C, Iberler M, Manegold T, Schonlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

  • [1] Qi Liang-Wen, Du Man-Qiang, Wen Xiao-Dong, Song Jian, Yan Hui-Jie. Dynamics and impurity spectral characteristics of coaxial gun discharge plasma. Acta Physica Sinica, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] Zhang Jin-Shuo, Sun Hui, Du Zhi-Jie, Zhang Xue-Hang, Xiao Qing-Mei, Fan Jin-Rui, Yan Hui-Jie, Song Jian. Analysis and optimization of acceleration model in coaxial plasma gun in pre-fill mode. Acta Physica Sinica, 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [3] Chen Ze-Yu, Peng Yu-Bin, Wang Rui, He Yong-Ning, Cui Wan-Zhao. Reaction dynamic process of low pressure discharge plasma in microwave resonant cavity. Acta Physica Sinica, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [4] Zhao Fan-Tao, Song Jian, Zhang Jin-Shuo, Qi Liang-Wen, Zhao Chong-Xiao, Wang De-Zhen. Effects of magnetized coaxial plasma gun operation on spheromak formation and plasma characteristics. Acta Physica Sinica, 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [5] Song Jian, Li Jia-Wen, Bai Xiao-Dong, Zhang Jin-Shuo, Yan Hui-Jie, Xiao Qing-Mei, Wang De-Zhen. Effect of length of outer electrode on plasma characteristics in coaxial gun. Acta Physica Sinica, 2021, 70(10): 105201. doi: 10.7498/aps.70.20201724
    [6] Yu Xin, Qi Liang-Wen, Zhao Chong-Xiao, Ren Chun-Sheng. Comparative study of positive and negative pulsed discharge plasma characteristics of coaxial gun. Acta Physica Sinica, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [7] Qi Liang-Wen, Zhao Chong-Xiao, Yan Hui-Jie, Wang Ting-Ting, Ren Chun-Sheng. Motion characteristics of coaxial gun discharge plasma current sheet. Acta Physica Sinica, 2019, 68(3): 035203. doi: 10.7498/aps.68.20181832
    [8] Zou Dan-Dan, Cai Zhi-Chao, Wu Peng, Li Chun-Hua, Zeng Han, Zhang Hong-Li, Cui Chun-Mei. Plasma characteristics of helical streamers induced by pulsed discharges. Acta Physica Sinica, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [9] Yang Xiong, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Three-dimensional direct numerical simulation of helicon discharge. Acta Physica Sinica, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [10] Yang Liang, Zhang Jun-Long, Yan Hui-Jie, Hua Yue, Ren Chun-Sheng. Experimental study on coaxial gun pulse discharge plasma density change in transport process. Acta Physica Sinica, 2017, 66(5): 055203. doi: 10.7498/aps.66.055203
    [11] Zhang Xin, Huang Yong, Wang Wan-Bo, Tang Kun, Li Hua-Xing. Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator. Acta Physica Sinica, 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [12] Wang Jian-Long, Ding Fang, Zhu Xiao-Dong. Optical properties of direct current glow discharge plasmas at high pressures. Acta Physica Sinica, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [13] Zhang Jun-Long, Yang Liang, Yan Hui-Jie, Hua Yue, Ren Chun-Sheng. Influence of discharge parameters on blow-by in a coaxial plasma gun. Acta Physica Sinica, 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [14] Feng Jing-Hua, Meng Shi-Jian, Fu Yue-Cheng, Zhou Lin, Xu Rong-Kun, Zhang Jian-Hua, Li Lin-Bo, Zhang Fa-Qiang. Spatiotemporal distribution of hydrogenous electrode vacuum arc discharge plasma. Acta Physica Sinica, 2014, 63(14): 145205. doi: 10.7498/aps.63.145205
    [15] Gao Zhu-Xiu, Feng Chun-Hua, Yang Xuan-Zong, Huang Jian-Guo, Han Jian-Wei. Research on plasma axial velocity generated by small debris accelerator coaxial gun. Acta Physica Sinica, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [16] Du Hong-Liang, He Li-Ming, Lan Yu-Dan, Wang Feng. Influence of reduced electric field on the evolvement characteristics of plasma under conditions of N2/O2 discharge. Acta Physica Sinica, 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [17] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [18] Li Gang, Xu Yan-Ji, Mu Ke-Jin, Nie Chao-Qun, Zhu Jun-Qiang, Zhang Yi, Li Han-Ming. Application of planar laser induced fluorescence in the investigation of the stagger electrode dielectric barrier discharge plasma. Acta Physica Sinica, 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [19] Huang Qin-Chao, Luo Jia-Rong, Wang Hua-Zhong, Li Chong. Quick identification of EAST plasma discharge shape. Acta Physica Sinica, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [20] Lu Xin-Pei, Pan Yuan, Zhang Han-Hong. . Acta Physica Sinica, 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
Metrics
  • Abstract views:  7137
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  19 February 2019
  • Accepted Date:  28 March 2019
  • Available Online:  01 May 2019
  • Published Online:  20 May 2019

/

返回文章
返回
Baidu
map