搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋波等离子体放电三维直接数值模拟

杨雄 程谋森 王墨戈 李小康

引用本文:
Citation:

螺旋波等离子体放电三维直接数值模拟

杨雄, 程谋森, 王墨戈, 李小康

Three-dimensional direct numerical simulation of helicon discharge

Yang Xiong, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang
PDF
导出引用
  • 在详细考虑电化学反应和粒子碰撞关系的基础上,建立了螺旋波放电三维直接数值计算模型,舍弃以往模型小扰动假设,对Maxwell方程组直接求解以计算电磁场能量沉积份额,扩展了螺旋波等离子体计算模型的精度和适用范围.以Ar为工质气体的仿真结果显示:密度跃升效应和电子温度与放电压力的关系与Toki等和Chen的实验结果符合较好;与经典鞘层理论对比,在粒子数密度、德拜长度、电势以及电子温度的分布上取得高度一致,验证了模型的有效性和精度.利用本文模型研究了低场螺旋波放电过程中的磁场峰值现象,验证了放电室端面的波干涉机理,并发现波干涉的本质是螺旋波分量与其端面回波叠加形成的驻波.
    With the detailed consideration of electrochemical reactions and collision relations, a direct numerical simulation model of helicon plasma discharge with three-dimensional fluid-dynamic equations is proposed in the present work. It can improve the precision of results and widen the model applicability by discarding the small perturbation theory in previous helicon models which are partially analytical in essence. Under the assumption of weak ionization, the Maxwell equations coupled with the plasma parameters are directly solved in the whole computational domain. Thus the energy deposited from electromagnetic wave to plasma can be then easily calculated. The values of plasma parameters which include electron density, mean electron energy and heavy species density are obtained by solving a set of drift-diffusion equations. Meanwhile, seven kinds of chemical reactions in the plasma and two kinds of surface reactions on the wall are taken into account. All of the partial differential equations are solved by the finite element solver of COMSOL MultiphysicsTM with the full coupled method.#br#The results of numerical cases employing argon as the working medium show that there exists a sharp density jump from a low to high value as the radiofrequency power is raised. The density jump phenomenon is in accordance with the experimental results of Toki (Toki K, Shinohara S, Tanikawa T, Shamrai K P 2006 Thin Solid Films 506-507 597) and Chen (Chen F F 2007 Plasma Sources Sci. Technol. 16 593). The electron temperature decreases with an increase of the gas pressure, which is similar to Toki's (Toki K, Shinohara S, Tanikawa T, Shamrai K P 2006 Thin Solid Films 506-507 597) measurement by a RF compensation probe. In comparison with the classical sheath theory, the simulation result demonstrates that the distribution of parameters such as particle number density, the Deby length, electric potential and electron temperature can be solved exactly. In addition, the phenomenon of low-field density peak in helicon discharge was studied in the work. Previous research by Chen (Chen F F 2003 Phys. Plasmas 10 2586) suggests that this peak is caused by constructive interference from the reflected wave. The effect of length of the discharge chamber on the relation of electron density and background magnetic field is investigated numerically. The results validate the mechanism of wave interference reflected by endplates of the discharge chamber. Furthermore, the time-averaged magnetic energy density has more than one peak on the axial direction. Comparing the distribution of the magnetic energy density to that of the dimensionless amplitude of the helicon wave and the TG wave in the one-dimensional undamped condition, it found that the length of peak to peak of the helicon wave is just as twice as that of the magnetic energy density, which indicates that the substance of wave interference is involved in the standing wave generated by the helicon wave and its reflected wave from endplates.
      通信作者: 杨雄, yx12321@126.com
    • 基金项目: 国家自然科学基金(批准号:11305265)资助的课题.
      Corresponding author: Yang Xiong, yx12321@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11305265).
    [1]

    Chen F F 1991 Plasma Phys. Controlled Fusion 33 339

    [2]

    Suwon C 1996 Phys. Plasmas 3 4268

    [3]

    Suwon C 1997 Phys. Plasmas 4 4167

    [4]

    Arnush D, Chen F F 1998 Phys. Plasmas 5 1239

    [5]

    Arnush D 2000 Phys. Plasmas 7 3042

    [6]

    Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095

    [7]

    Curreli D, Chen F F 2011 Phys. Plasmas 18 113501

    [8]

    Chen F F, Curreli D 2013 Phys. Plasmas 20 057102

    [9]

    Ahedo E 2009 Phys. Plasmas 16 113503

    [10]

    Ahedo E, Jaume N C 2013 Phys. Plasmas 20 043512

    [11]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Acta Phys. Sin. 63 035203 (in Chinese)[成玉国, 程谋森, 王墨戈, 李小康2014 63 035203]

    [12]

    Cheng Y G, Cheng M S, Wang M G, Li X K, Yang X 2014 Plasma Sources Sci. Technol. 16 1111

    [13]

    Boswell R W 1984 Plasma Phys. Controlled Fusion 26 1147

    [14]

    Toki K, Shinohara S, Tanikawa T, Shamrai K P 2006 Thin Solid Films 506-507 597

    [15]

    Chen F F 2007 Plasma Sources Sci. Technol. 16 593

    [16]

    Cheng Y G 2015 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[成玉国2015博士学位论文(长沙:国防科技大学)]

    [17]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [18]

    Dimitris P L, Demetre J E 1995 J. Res. Nat. Inst. Stand. Technol. 100 473

    [19]

    Chen F F, Torreblanca H 2007 Plasma Phys. Controlled Fusion 49 81

    [20]

    Chen F F 1992 J. Vac. Sci. Technol. A 10 1389

    [21]

    Chen F F 2003 Phys. Plasmas 10 2586

    [22]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411

  • [1]

    Chen F F 1991 Plasma Phys. Controlled Fusion 33 339

    [2]

    Suwon C 1996 Phys. Plasmas 3 4268

    [3]

    Suwon C 1997 Phys. Plasmas 4 4167

    [4]

    Arnush D, Chen F F 1998 Phys. Plasmas 5 1239

    [5]

    Arnush D 2000 Phys. Plasmas 7 3042

    [6]

    Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095

    [7]

    Curreli D, Chen F F 2011 Phys. Plasmas 18 113501

    [8]

    Chen F F, Curreli D 2013 Phys. Plasmas 20 057102

    [9]

    Ahedo E 2009 Phys. Plasmas 16 113503

    [10]

    Ahedo E, Jaume N C 2013 Phys. Plasmas 20 043512

    [11]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Acta Phys. Sin. 63 035203 (in Chinese)[成玉国, 程谋森, 王墨戈, 李小康2014 63 035203]

    [12]

    Cheng Y G, Cheng M S, Wang M G, Li X K, Yang X 2014 Plasma Sources Sci. Technol. 16 1111

    [13]

    Boswell R W 1984 Plasma Phys. Controlled Fusion 26 1147

    [14]

    Toki K, Shinohara S, Tanikawa T, Shamrai K P 2006 Thin Solid Films 506-507 597

    [15]

    Chen F F 2007 Plasma Sources Sci. Technol. 16 593

    [16]

    Cheng Y G 2015 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[成玉国2015博士学位论文(长沙:国防科技大学)]

    [17]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [18]

    Dimitris P L, Demetre J E 1995 J. Res. Nat. Inst. Stand. Technol. 100 473

    [19]

    Chen F F, Torreblanca H 2007 Plasma Phys. Controlled Fusion 49 81

    [20]

    Chen F F 1992 J. Vac. Sci. Technol. A 10 1389

    [21]

    Chen F F 2003 Phys. Plasmas 10 2586

    [22]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411

  • [1] 李新霞, 李国壮, 刘洪波. 中国聚变工程实验堆等离子体螺旋波阻尼系数的研究.  , 2020, 69(14): 145201. doi: 10.7498/aps.69.20200222
    [2] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究.  , 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [3] 韩祥临, 陈贤峰, 莫嘉琪. 一类量子等离子体类孤波的近似解析解.  , 2014, 63(3): 030202. doi: 10.7498/aps.63.030202
    [4] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析.  , 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [5] 白占国, 李新政, 李燕, 赵昆. 气体放电系统中多臂螺旋波的数值分析.  , 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [6] 乔成功, 李伟恒, 唐国宁. 细胞外钾离子浓度延迟恢复对螺旋波的影响研究.  , 2014, 63(23): 238201. doi: 10.7498/aps.63.238201
    [7] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究.  , 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [8] 周先春, 林万涛, 林一骅, 莫嘉琪. 大气非均匀量子等离子体孤波解.  , 2012, 61(24): 240202. doi: 10.7498/aps.61.240202
    [9] 郑灵, 赵青, 刘述章, 邢晓俊. 太赫兹波在非磁化等离子体中的传输特性研究.  , 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [10] 郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖. 等离子体中电磁波传输特性理论与实验研究.  , 2012, 61(15): 155203. doi: 10.7498/aps.61.155203
    [11] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状.  , 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [12] 马军, 谢振博, 陈江星. 热敏神经元网络中螺旋波死亡和破裂的数值模拟.  , 2012, 61(3): 038701. doi: 10.7498/aps.61.038701
    [13] 莫嘉琪. 一类非线性尘埃等离子体孤波解.  , 2011, 60(3): 030203. doi: 10.7498/aps.60.030203
    [14] 马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫. 毫米波在等离子体中的衰减特性研究.  , 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [15] 韦海明, 唐国宁. 离散可激发介质中早期后去极化对螺旋波影响的数值研究.  , 2011, 60(3): 030501. doi: 10.7498/aps.60.030501
    [16] 韦海明, 唐国宁. 交替行为对螺旋波影响的数值模拟研究.  , 2011, 60(4): 040504. doi: 10.7498/aps.60.040504
    [17] 钟敏, 唐国宁. 用钙离子通道激动剂抑制心脏组织中的螺旋波和时空混沌.  , 2010, 59(5): 3070-3076. doi: 10.7498/aps.59.3070
    [18] 葛琳, 季沛勇. 等离子体波背景下的光子Berry相位.  , 2009, 58(1): 347-353. doi: 10.7498/aps.58.347
    [19] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析.  , 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [20] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用.  , 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
计量
  • 文章访问数:  7875
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-10
  • 修回日期:  2016-11-01
  • 刊出日期:  2017-01-20

/

返回文章
返回
Baidu
map