搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称式布局介质阻挡放电等离子体激励器诱导启动涡

张鑫 黄勇 王万波 唐坤 李华星

引用本文:
Citation:

对称式布局介质阻挡放电等离子体激励器诱导启动涡

张鑫, 黄勇, 王万波, 唐坤, 李华星

Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator

Zhang Xin, Huang Yong, Wang Wan-Bo, Tang Kun, Li Hua-Xing
PDF
导出引用
  • 为了进一步提高等离子体激励器控制能力,采用粒子图像测速仪技术,以介质阻挡放电等离子体激励器为研究对象,开展了有、无来流条件下等离子体诱导启动涡的实验研究,获得了来流对启动涡发展演化及生存时间的影响. 与传统非对称布局介质阻挡放电等离子体激励器相比,本文采用整个平板金属模型作为植入电极的对称布局方式开展研究. 在金属模型表面黏贴聚酰亚胺胶带作为绝缘介质. 将铜箔作为暴露电极沿平板展向布置,使激励器诱导气流沿流向方向. 研究结果表明:对称布局式激励器会在暴露电极两侧产生一对方向相反的启动涡. 在顺流向方向,来流加速了启动涡的破碎;在逆来流方向,来流延长了启动涡的生存时间,从而增加了激励器的掺混能力. 该布局激励器具有掺混及射流效应两种能力,为提高等离子体激励器在高风速或高雷诺数下的控制效果积累了技术基础.
    Flow control using plasma actuator is a promising research field of aeronautical applications. Due to its low energy consumption, rapid response and simple construction, this actuator has been investigated in various aerodynamics problems, such as boundary layer flow control, drag reduction, lift enhancement, noise reduction, and flow separation control. In order to understand the controlling mechanism of plasma actuator, many researchers have been carried out some experiments on the plasma actuator characterization in quiescent air and obtained the evolution process of starting vortex induced by plasma actuator. But the plasma actuator always works under flow condition. Therefore, understanding the interaction process between the starting vortex and incoming flow is a key to promote this technology development. In this paper, the starting vortex induced by symmetrical Dielectric Barrier Discharge (DBD) plasma actuator in quiescent air or under flow condition was investigated using Particle Image Velocimetry (PIV). Compared with the asymmetrical DBD plasma actuator, the symmetrical plasma actuator adopted the whole metal plate model as the insulated electrode. Three layers of kapton film as dielectric material covered the testing model and the thickness of each layer was 0.05 mm. The copper foil which was 2 mm in width and 0.05 mm in thickness was mounted on the trailing edge of the plate and oriented along the spanwise direction to induce a wall jet in the streamwise direction. The input AC voltage was 8 kV p-p and the frequency of the power source was 3 kHz. The wind speed was 1 m/s. The results suggested that the symmetrical actuator produced one pair of counter-rotating starting vortexes on each side of upper electrode and the trajectory of the starting vortex core was shown to scale with t0.7 in quiescent air. Compared to the evolution law of starting vortex in still air, the development evolution and life time of starting vortex under flow condition was different due to the interaction influence between incoming flow and starting vortex. The breakdown time of downstream starting vortex was earlier and the location of the starting vortex core scaled with t0.45 under flow condition. Conversely, the life time of upstream starting vortex which was in the opposite direction of incoming flow was delayed. The incoming flow enhanced the upstream starting vortex's capability of promoting mixing and entraining high-momentum fluid into boundary layer, therefore the boundary layer became more energetic and capable of withstanding adverse pressure gradient. The jet effect and mixing function could be achieved by the symmetrical plasma actuator. These investigations laid the groundwork for flow control using DBD plasma actuator at high wind speed or high Reynolds number.
      通信作者: 张鑫, lookzx@mail.ustc.edu.cn
    • 基金项目: 武器探索研究重大项目(批准号:7130711)资助的课题.
      Corresponding author: Zhang Xin, lookzx@mail.ustc.edu.cn
    • Funds: Project supported by the Exploration Foundation of Weapon System (Grant No. 7130711).
    [1]

    Corke T C, Post M L, Orlov D M 2007 Prog. Aerosp. Sci. 43 193

    [2]

    Patel M P, Ng T T, Vasudevan S 2007 AIAA J. 44 4

    [3]

    Roupassov D, Nikipelov A, Nudnova M 2009 AIAA J. 47 1

    [4]

    Benard N, Moreau E, Griffin J 2010 Exp. Fluids 48 791

    [5]

    Thomas F, Corke T C, Iqbal M 2009 AIAA J. 47 9

    [6]

    Li Y H, Liang H, Ma Q Y, Wu Y, Song H M, Wu W 2008 Acta Aeronaut. Astronaut. Sin. 29 6 (in Chinese) [李应红, 梁华, 马清源, 吴云, 宋慧敏, 武卫 2008 航空学报 29 6]

    [7]

    Wu Y, Li Y H, Jia M 2010 Chin. J. Aeronaut. 23 1

    [8]

    Wu Y, Li Y H 2015 Acta Aeronaut. Astronaut. Sin. 36 2 (in Chinese) [吴云, 李应红 2015 航空学报 36 2]

    [9]

    Wang J J, Choi K S, Feng L H, Jukes T N 2013 Prog. Aerosp. Sci. 62 52

    [10]

    Che X K, Shao T, Nie W S, Yan P 2012 J. Phys. D: Appl. Phys. 45 145201

    [11]

    Zhang P F, Liu A B, Wang J J 2009 AIAA J. 47 10

    [12]

    Shi Z W, Fan B G 2011 Acta Aeronaut. Astronaut. Sin. 32 9 (in Chinese) [史志伟, 范本根 2011 航空学报 32 9]

    [13]

    Meng X S, Guo Z X, Luo S J 2010 Acta Aeronaut. Astronaut. Sin. 3 3 (in Chinese) [孟宣市, 郭志鑫, 罗时钧 2010 航空学报 3 3]

    [14]

    Liu Z F, Wang L Z, Fu S 2011 Sci. China-Phys. Mech. Astron. 54 11

    [15]

    Nie C Q, Li G, Zhu J Q 2008 Sci. China-Phys. Mech. Astron. 51 7

    [16]

    Zhu Y F, Wu Y, Cui W, Li Y H, Jia M 2013 Acta Aeronaut. Astronaut. Sin. 34 9 (in Chinese) [朱益飞, 吴云, 崔巍, 李应红, 贾敏 2013 航空学报 34 9]

    [17]

    Liang H, Li Y H, Wu Y, Wu W, Ma Q Y 2009 High Voltage Engineering 35 5 (in Chinese) [梁华, 李应红, 吴云, 武卫, 马清源 2009 高电压技术 35 5]

    [18]

    Leger L, Moreau E, Touchard G 2002 1st Flow Control Conference St. Louis, USA, June 24-26, 2002 p2833

    [19]

    Magnier P, Hong D, Chesneau A L, Bauchire J M 2007 Exp. Fluids 42 5

    [20]

    Zhang X, Huang Y, Huang Z B, Wang X N, Shen Z H 2011 J. Exp. Fluid Mech. 25 1 (in Chinese) [张鑫, 黄勇, 黄宗波, 王勋年, 沈志洪 2011 实验流体力学 25 1]

    [21]

    Burgmann S, Schroder W 2008 Exp. Fluids 45 675

    [22]

    Zhang X, Huang Y, Wang X N 2016 Acta Aeronaut. Astronaut. Sin. 37 6 (in Chinese) [张鑫, 黄勇, 王勋年 2016 航空学报 37 6]

    [23]

    He C, Corke T C, Patel M P 2004 J. Aircr. 46 864

    [24]

    Grundmann S, Tropea C 2008 Exp. Fluids 44 795

    [25]

    Han M H, Li J, Liang H, Zhao G Y, Hua W Z, Wang D B 2015 High Voltage Engineering 41 6 (in Chinese) [韩孟虎, 李军, 梁华, 赵光银, 化为卓, 王大博 2015 高电压技术 41 6]

    [26]

    Grossman K R, Cybyk B Z, Vanwie D M 2003 AIAA Paper -57

    [27]

    Popkin S H, Cybyk B Z, Land H B, Emerick T M, Foster C H, Alvi F S 2013 AIAA Paper 2013-0322

    [28]

    Liu R B, Niu Z G, Wang M M, Hao M, Lin Q 2015 Sci. China Technol. Sci. 58 11

    [29]

    Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y 2009 Acta Phys. Sin. 58 5513 (in Chinese) [王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云 2009 58 5513]

    [30]

    Chen Z L, Hao L Z, Zhang B Q 2013 Sci. China Technol. Sci. 56 5

    [31]

    Feng L H, Jukes T N, Choi K S, Wang J J 2012 Exp. Fluids 52 1533

    [32]

    Du H, Shi Z W, Geng X 2012 Acta Aeronaut. Astronaut. Sin. 33 10 (in Chinese) [杜海, 史志伟, 耿玺 2012 航空学报 33 10]

    [33]

    Whalley R D, Choi K S 2010 Phys. Fluids 22 091105

    [34]

    Forte M, Jolibois J, Pons J, Moreau E, Touchard G, Cazalens M 2007 Exp. Fluids 43 6

    [35]

    Enloe C L, McLaughlin T E, Vandyken R D 2004 AIAA J. 42 3

    [36]

    Post M L 2004 Ph. D. Dissertation (USA: University of Notre Dame)

    [37]

    Whalley R D, Choi K S 2012 J. Fluid Mech. 703 192

    [38]

    Mertz B E, Corke T C 2011 J. Fluid Mech. 669 192

    [39]

    Liang H, Li Y H, Song H M, Jia M, Wu Y 2011 J. Exp. Fluid Mech. 25 3 (in Chinese) [梁华, 李应红, 宋慧敏, 贾敏, 吴云 2011 实验流体力学 25 3]

    [40]

    Che X K, Nie W S, Zhou P H, He H B, Tian X H, Zhou S Y 2013 Acta Phys. Sin. 62 224702 (in Chinese) [车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引 2013 62 224702]

    [41]

    Cheng Y F, Nie W S, Che X K, Tian X H, Hou Z Y, Zhou P H 2013 Acta Phys. Sin. 62 104702 (in Chinese) [程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉 2013 62 104702]

    [42]

    Zhang Y, Li W P, Wang F X, Xiang Y, Li Z J 2014 J. Shanghai Jiaotong Univ. (Sci.) 48 8 (in Chinese) [张屹, 李伟鹏, 王福新, 向阳, 李子佳 2014 上海交通大学学报 48 8]

    [43]

    Kelley C L, Bowles P O, Cooney J, He C, Corke T C 2014 AIAA J. 52 9

    [44]

    Moreau E 2007 J. Phys. D: Appl. Phys. 40 605

    [45]

    Jacob J D, Ramakumar K 2005 4th International Symposium on Turbulence and Shear Flow Phenomena Williamsburg, USA, June 27-29

    [46]

    Feng L H, Wang J J 2014 Eur. J. Mech. B-Fluids 43 14

    [47]

    Zhang X, Huang Y, Shen Z H 2012 J. Exp. Fluid Mech. 26 3 (in Chinese) [张鑫, 黄勇, 沈志洪 2012 实验流体力学 26 3]

    [48]

    Zhang X, Huang Y, Wang W B 2014 Sci. China-Phys. Mech. Astron. 57 6

  • [1]

    Corke T C, Post M L, Orlov D M 2007 Prog. Aerosp. Sci. 43 193

    [2]

    Patel M P, Ng T T, Vasudevan S 2007 AIAA J. 44 4

    [3]

    Roupassov D, Nikipelov A, Nudnova M 2009 AIAA J. 47 1

    [4]

    Benard N, Moreau E, Griffin J 2010 Exp. Fluids 48 791

    [5]

    Thomas F, Corke T C, Iqbal M 2009 AIAA J. 47 9

    [6]

    Li Y H, Liang H, Ma Q Y, Wu Y, Song H M, Wu W 2008 Acta Aeronaut. Astronaut. Sin. 29 6 (in Chinese) [李应红, 梁华, 马清源, 吴云, 宋慧敏, 武卫 2008 航空学报 29 6]

    [7]

    Wu Y, Li Y H, Jia M 2010 Chin. J. Aeronaut. 23 1

    [8]

    Wu Y, Li Y H 2015 Acta Aeronaut. Astronaut. Sin. 36 2 (in Chinese) [吴云, 李应红 2015 航空学报 36 2]

    [9]

    Wang J J, Choi K S, Feng L H, Jukes T N 2013 Prog. Aerosp. Sci. 62 52

    [10]

    Che X K, Shao T, Nie W S, Yan P 2012 J. Phys. D: Appl. Phys. 45 145201

    [11]

    Zhang P F, Liu A B, Wang J J 2009 AIAA J. 47 10

    [12]

    Shi Z W, Fan B G 2011 Acta Aeronaut. Astronaut. Sin. 32 9 (in Chinese) [史志伟, 范本根 2011 航空学报 32 9]

    [13]

    Meng X S, Guo Z X, Luo S J 2010 Acta Aeronaut. Astronaut. Sin. 3 3 (in Chinese) [孟宣市, 郭志鑫, 罗时钧 2010 航空学报 3 3]

    [14]

    Liu Z F, Wang L Z, Fu S 2011 Sci. China-Phys. Mech. Astron. 54 11

    [15]

    Nie C Q, Li G, Zhu J Q 2008 Sci. China-Phys. Mech. Astron. 51 7

    [16]

    Zhu Y F, Wu Y, Cui W, Li Y H, Jia M 2013 Acta Aeronaut. Astronaut. Sin. 34 9 (in Chinese) [朱益飞, 吴云, 崔巍, 李应红, 贾敏 2013 航空学报 34 9]

    [17]

    Liang H, Li Y H, Wu Y, Wu W, Ma Q Y 2009 High Voltage Engineering 35 5 (in Chinese) [梁华, 李应红, 吴云, 武卫, 马清源 2009 高电压技术 35 5]

    [18]

    Leger L, Moreau E, Touchard G 2002 1st Flow Control Conference St. Louis, USA, June 24-26, 2002 p2833

    [19]

    Magnier P, Hong D, Chesneau A L, Bauchire J M 2007 Exp. Fluids 42 5

    [20]

    Zhang X, Huang Y, Huang Z B, Wang X N, Shen Z H 2011 J. Exp. Fluid Mech. 25 1 (in Chinese) [张鑫, 黄勇, 黄宗波, 王勋年, 沈志洪 2011 实验流体力学 25 1]

    [21]

    Burgmann S, Schroder W 2008 Exp. Fluids 45 675

    [22]

    Zhang X, Huang Y, Wang X N 2016 Acta Aeronaut. Astronaut. Sin. 37 6 (in Chinese) [张鑫, 黄勇, 王勋年 2016 航空学报 37 6]

    [23]

    He C, Corke T C, Patel M P 2004 J. Aircr. 46 864

    [24]

    Grundmann S, Tropea C 2008 Exp. Fluids 44 795

    [25]

    Han M H, Li J, Liang H, Zhao G Y, Hua W Z, Wang D B 2015 High Voltage Engineering 41 6 (in Chinese) [韩孟虎, 李军, 梁华, 赵光银, 化为卓, 王大博 2015 高电压技术 41 6]

    [26]

    Grossman K R, Cybyk B Z, Vanwie D M 2003 AIAA Paper -57

    [27]

    Popkin S H, Cybyk B Z, Land H B, Emerick T M, Foster C H, Alvi F S 2013 AIAA Paper 2013-0322

    [28]

    Liu R B, Niu Z G, Wang M M, Hao M, Lin Q 2015 Sci. China Technol. Sci. 58 11

    [29]

    Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y 2009 Acta Phys. Sin. 58 5513 (in Chinese) [王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云 2009 58 5513]

    [30]

    Chen Z L, Hao L Z, Zhang B Q 2013 Sci. China Technol. Sci. 56 5

    [31]

    Feng L H, Jukes T N, Choi K S, Wang J J 2012 Exp. Fluids 52 1533

    [32]

    Du H, Shi Z W, Geng X 2012 Acta Aeronaut. Astronaut. Sin. 33 10 (in Chinese) [杜海, 史志伟, 耿玺 2012 航空学报 33 10]

    [33]

    Whalley R D, Choi K S 2010 Phys. Fluids 22 091105

    [34]

    Forte M, Jolibois J, Pons J, Moreau E, Touchard G, Cazalens M 2007 Exp. Fluids 43 6

    [35]

    Enloe C L, McLaughlin T E, Vandyken R D 2004 AIAA J. 42 3

    [36]

    Post M L 2004 Ph. D. Dissertation (USA: University of Notre Dame)

    [37]

    Whalley R D, Choi K S 2012 J. Fluid Mech. 703 192

    [38]

    Mertz B E, Corke T C 2011 J. Fluid Mech. 669 192

    [39]

    Liang H, Li Y H, Song H M, Jia M, Wu Y 2011 J. Exp. Fluid Mech. 25 3 (in Chinese) [梁华, 李应红, 宋慧敏, 贾敏, 吴云 2011 实验流体力学 25 3]

    [40]

    Che X K, Nie W S, Zhou P H, He H B, Tian X H, Zhou S Y 2013 Acta Phys. Sin. 62 224702 (in Chinese) [车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引 2013 62 224702]

    [41]

    Cheng Y F, Nie W S, Che X K, Tian X H, Hou Z Y, Zhou P H 2013 Acta Phys. Sin. 62 104702 (in Chinese) [程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉 2013 62 104702]

    [42]

    Zhang Y, Li W P, Wang F X, Xiang Y, Li Z J 2014 J. Shanghai Jiaotong Univ. (Sci.) 48 8 (in Chinese) [张屹, 李伟鹏, 王福新, 向阳, 李子佳 2014 上海交通大学学报 48 8]

    [43]

    Kelley C L, Bowles P O, Cooney J, He C, Corke T C 2014 AIAA J. 52 9

    [44]

    Moreau E 2007 J. Phys. D: Appl. Phys. 40 605

    [45]

    Jacob J D, Ramakumar K 2005 4th International Symposium on Turbulence and Shear Flow Phenomena Williamsburg, USA, June 27-29

    [46]

    Feng L H, Wang J J 2014 Eur. J. Mech. B-Fluids 43 14

    [47]

    Zhang X, Huang Y, Shen Z H 2012 J. Exp. Fluid Mech. 26 3 (in Chinese) [张鑫, 黄勇, 沈志洪 2012 实验流体力学 26 3]

    [48]

    Zhang X, Huang Y, Wang W B 2014 Sci. China-Phys. Mech. Astron. 57 6

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性.  , 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验.  , 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [3] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究.  , 2021, (): . doi: 10.7498/aps.70.20211425
    [4] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强.  , 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [5] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟.  , 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [6] 王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云. 激波/边界层干扰对等离子体合成射流的响应特性.  , 2017, 66(8): 084705. doi: 10.7498/aps.66.084705
    [7] 刘梦珂, 张辉, 范宝春, 韩洋, 归明月. 电磁控制两自由度涡生振荡的机理研究.  , 2016, 65(24): 244702. doi: 10.7498/aps.65.244702
    [8] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真.  , 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [9] 冯璟华, 蒙世坚, 甫跃成, 周林, 徐荣昆, 张建华, 李林波, 章法强. 含氢电极真空弧放电等离子体时空分布特性研究.  , 2014, 63(14): 145205. doi: 10.7498/aps.63.145205
    [10] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究.  , 2014, 63(18): 185208. doi: 10.7498/aps.63.185208
    [11] 程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉. 不同压力下介质阻挡放电等离子体诱导流场演化的实验研究.  , 2013, 62(10): 104702. doi: 10.7498/aps.62.104702
    [12] 李雪辰, 刘润甫, 贾鹏英, 孔柳青. 流动氩气放电系统中条纹斑图形成的实验研究.  , 2012, 61(11): 115205. doi: 10.7498/aps.61.115205
    [13] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量.  , 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [14] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [15] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究.  , 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [16] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究.  , 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [17] 李 钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张 翼, 李汉明. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用.  , 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [18] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究.  , 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [19] 刘艳红, 张家良, 王卫国, 李 建, 刘东平, 马腾才. CH4或CH4+Ar介质阻挡放电中的离子能量和类金刚石膜制备.  , 2006, 55(3): 1458-1463. doi: 10.7498/aps.55.1458
    [20] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究.  , 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
计量
  • 文章访问数:  6986
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-13
  • 修回日期:  2016-07-03
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map