-
In this work, the parallel bright and dark plasma striations are observed in direct correct glow discharge plasmas at high pressures (>100 Torr, 1 Torr=1.33322×102 Pa), and the effect of working gas on the plasma optical property is studied by combining the measurements of optical emission spectra. With the increase of the methane concentration, the length of striations decreases and the corresponding electron excitation temperature reduces. As the concentration of methane increases, the species with the low ionization energy increases, and the average ionization energy of the species decreases. In this case, the electron accelerated in a smaller distance can obtain enough energy to excite the gas species and produce visible light emission, and thus the length of plasma striations becomes shorter. With the introduction of argon, the plasma striations appear clearly. The length of striations increases with the increase of argon content, which is also correlated with the higher ionization energy of argon, while the corresponding electron excitation temperature rises. The length of plasma striations shows a response to the electron temperature as working gas changes.
-
Keywords:
- plasma /
- high gas pressure /
- optical property
[1] Lee J K, Eun K Y, Baik Y J, Cheon H J, Rhyu J W, Shin T J, Park J W 2002 Diamond Relat. Mater. 11 463
[2] Ding F, Zhu X D, Zhan R J, Ni T L, Ke B, Zhou H Y, Chen M D, Wen X H 2009 Appl. Phys. Lett. 95 121501
[3] Kunhardt E E 2000 IEEE Trans. Plasma Sci. 28 189
[4] Lee D A, Garscadden A 1972 Phys. Fluids 15 1826
[5] Laz F, Yang S S, Kim H C, Lee J K 2005 J. Appl. Phys. 98 043302
[6] He S J, Ha J, Guo S Q, Liu Z Q, Dong L F 2014 Spectrosc. Spect. Anal. 34 39 (in Chinese) [何寿杰, 哈静, 郭树青, 刘志强, 董丽芳 2014 光谱学与光谱分析 34 39]
[7] Zhao X F, He F, Ouyang J T 2012 Phys. Lett. A 376 2057
[8] Robert R A, Vladimir I K 2005 IEEE Trans. Plasma Sci. 33 354
[9] Rajneesh K, Sanjay V K, Dhiraj B 2007 Phys. Plasmas 14 122101
[10] Vladimir I K 2006 J. Phys. D: Appl. Phys. 39 487
[11] David S, Bakhtier F, Alexander G 2008 Plasma Sources Sci. Technol. 17 025013
[12] Yuri B G, Vladimir I K, Vladimir O 2013 Phys. Plasmas 20 101602
[13] Zheng S J, Ding F, Xie X H, Tang Z L, Zhang Y C, Li H, Yang K, Zhu X D 2013 Acta Phys. Sin. 16 165204 (in Chinese) [郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东 2013 16 165204]
[14] Liberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp535-543 (in Chinese) [力伯曼 M A, 里登博格 A J 著(蒲以康 译) 2007 等离子体放电原理与材料处理(北京: 科学出版社)第535–543页]
[15] Sukhinin G I, Fedoseev A V 2006 High Temp. 44 157
-
[1] Lee J K, Eun K Y, Baik Y J, Cheon H J, Rhyu J W, Shin T J, Park J W 2002 Diamond Relat. Mater. 11 463
[2] Ding F, Zhu X D, Zhan R J, Ni T L, Ke B, Zhou H Y, Chen M D, Wen X H 2009 Appl. Phys. Lett. 95 121501
[3] Kunhardt E E 2000 IEEE Trans. Plasma Sci. 28 189
[4] Lee D A, Garscadden A 1972 Phys. Fluids 15 1826
[5] Laz F, Yang S S, Kim H C, Lee J K 2005 J. Appl. Phys. 98 043302
[6] He S J, Ha J, Guo S Q, Liu Z Q, Dong L F 2014 Spectrosc. Spect. Anal. 34 39 (in Chinese) [何寿杰, 哈静, 郭树青, 刘志强, 董丽芳 2014 光谱学与光谱分析 34 39]
[7] Zhao X F, He F, Ouyang J T 2012 Phys. Lett. A 376 2057
[8] Robert R A, Vladimir I K 2005 IEEE Trans. Plasma Sci. 33 354
[9] Rajneesh K, Sanjay V K, Dhiraj B 2007 Phys. Plasmas 14 122101
[10] Vladimir I K 2006 J. Phys. D: Appl. Phys. 39 487
[11] David S, Bakhtier F, Alexander G 2008 Plasma Sources Sci. Technol. 17 025013
[12] Yuri B G, Vladimir I K, Vladimir O 2013 Phys. Plasmas 20 101602
[13] Zheng S J, Ding F, Xie X H, Tang Z L, Zhang Y C, Li H, Yang K, Zhu X D 2013 Acta Phys. Sin. 16 165204 (in Chinese) [郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东 2013 16 165204]
[14] Liberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp535-543 (in Chinese) [力伯曼 M A, 里登博格 A J 著(蒲以康 译) 2007 等离子体放电原理与材料处理(北京: 科学出版社)第535–543页]
[15] Sukhinin G I, Fedoseev A V 2006 High Temp. 44 157
Catalog
Metrics
- Abstract views: 7821
- PDF Downloads: 485
- Cited By: 0