搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴枪放电等离子体动力学与杂质谱特性研究

漆亮文 杜满强 温晓东 宋健 闫慧杰

引用本文:
Citation:

同轴枪放电等离子体动力学与杂质谱特性研究

漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰

Study on the plasma dynamics and impurity spectral characteristics of coaxial gun discharge

Qi Liang-Wen, Du Man-Qiang, Wen Xiao-Dong, Song Jian, Yan Hui-Jie
PDF
导出引用
  • 同轴枪放电可以产生高速度、高密度及高能量密度的等离子体射流,在等离子体空间推进、天体物理和高温核聚变等研究领域具有广泛的应用。基于同轴枪的实际应用,等离子体速度、密度、纯净度是评估等离子体特性的重要参量。本实验通过对等离子体光电流信号和发射光谱的测量及放电图像的拍摄,研究了不同放电电流和气压对同轴枪放电等离子体的动力学特性、电子密度与杂质发射光谱的影响。实验结果表明:气压为10 Pa,放电电流为30-70 kA时,等离子体在枪内的加速时间随电流的增大而缩短,等离子体中阳极和阴极杂质光谱均随电流的增大而增强;放电电流为40 kA,气压为10-70 Pa时,等离子体加速时间随气压的增大而增长,等离子体中阴极杂质光谱强度随气压的增加不断降低,而阳极杂质光谱强度却是逐渐增加的,不过其增长速率逐渐减小。分析认为,不同放电电流和气压决定了等离子体获能、加速特性及电子密度,协同影响金属杂质特性。同轴枪喷口处发生等离子体箍缩效应与高密度电弧在枪内加速时间是影响阳极烧蚀的重要因素,阴极材料的杂质是离子轰击溅射产生的,主要依赖于离子携带的能量。
    The coaxial gun discharge could produce plasma jet with high velocity, high density and high energy density, which has a wide range of applications in plasma space propulsion, simulation of the interaction between edge local mode and wall materials in ITER, fuel injection in magnetic confinement fusion devices, and laboratory astrophysics, etc. In the pre-filled discharge mode, the plasma current sheet is formed near the insulating layer surface and moves toward the end of the coaxial gun under Lorentz force. Plasma velocity, density and purity characteristics are very important research contents for the actual application of coaxial gun. Emission spectrometry as a non-interference method can be used to diagnose a variety of plasma physical properties. In this experiment, the effects of different discharge currents and gas pressure on the plasma dynamics, electron density and impurity emission spectra of coaxial gun discharge plasma are studied through the measurement of plasma photocurrent, emission spectra and the shooting of discharge images. The experimental results show that the acceleration time of the plasma in the gun decreases with the increase of the current in 30~70 kA when the gas pressure is 10 Pa, the spectra of anode and cathode impurities in plasma increase with the current amplitude. When the discharge current is 40 kA and the gas pressure is in 10~70 Pa, the acceleration time of plasma increases with the increase of gas pressure, and the spectral intensity of the cathode impurity in the plasma decreases with the increase of the pressure, while the spectral intensity of the anode impurity increases gradually, but its growth rate decreases continuously. According to the analysis, the presence of metallic impurities originating from the electrode material limits the jet velocity of the plasma and is the main cause of the deviation from theoretical value. The plasma pinch effect at the nozzle of coaxial gun and the acceleration time of high-density arc in the gun are important factors affecting anode ablation. The impurity of cathode material is produced by ion bombardment sputtering, which mainly depends on the energy attached to ions. Therefore, a reasonable choice for discharge parameters is the key factor to obtain optimal plasma characteristics during the discharge of the coaxial gun.
  • [1]

    Hammer J H, Hartman C W, Eddleman J L, McLean H S 1988 Phys. Rev. Lett. 61 2843

    [2]

    Hammer J H, Eddleman J L, Hartman C W, McLean H S, Molvik A W 1991 Phys. Fluids B 3 2236

    [3]

    Skvortsov Y V. 1992 Phys. Fluids B 4 750

    [4]

    Black D C, Mayo R M, Gerwin R A, Schoenberg K F, Scheuer J T, Hoyt R P, Henins I 1994 Phys. Plasmas 1 3115

    [5]

    Sadowski M J, Scholz M 2008 Plasma. Sources Sci. T. 17 024001

    [6]

    Baker K L, Hwang D Q, Evans R W, Horton R D, McLean H S, Terry S D, Howard S, DiCaprio C J 2002 Nucl. Fusion 42 94

    [7]

    Tereshin V I, Bandura A N, Byrka O V, Chebotarev V V, Garkusha I E, Landman I, Makhlaj V A, Neklyudov I M, Solyakov D G, Tsarenko A V 2007 Plasma Phys. Control. Fusion 49 A231

    [8]

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201 (in Chinese) [高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 61 145201] [9] Hsu S C, Moser A L, Merritt E C, Adams C S, Dunn J P, Brockington S, Case A, Gilmore M, Lynn A G, Messer S J, Witherspoon F D 2014 J. Plasma Phys. 81 345810201

    [9]

    J. Wiechula, A. Schoenlein, M. Iberler, C. Hock, T. Manegold, B. Bohlender, J. Jacoby, 2016 AIP Adv. 6, 075313

    [10]

    Zhang Y, Fisher D M, Gilmore M, Hsu S C and Lynn A G 2018 Phys. Plasmas 25 055709 [12] Woodall D M, Len L K 1985 J. Appl. Phys. 57 961

    [11]

    Qi L W, Zhao C X, Yan H J, Wan T T, Ren C S 2019 Acta Phys. Sin. 63 035203(in Chinese)[漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 63 035203]

    [12]

    Poehlmann F R 2010 Ph. D Dissertation (Stamford: Stanford University)

    [13]

    Zhao C X, Qi L W, Yan H J, Wan T T, Ren C S 2019 Acta Phys. Sin. 68 105203(in Chinese)[赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203]

    [14]

    Y. Kikuchi Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232

    [15]

    Parks P B 1988 Phys. Rev. Lett. 61 1364-1367

    [16]

    Rabiński M, Zdunek K 2003 Vacuum 70 303

    [17]

    Rabiński M, Zdunek K 2007 Surface & Coatings Technology 201 5438

    [18]

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203 (in Chinese) [杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 66 055203]

    [19]

    Liu S, Huang Y Z, Guo H S, Zhang Y P ,Yang L J 2018 Acta Phys. Sin. 67 065201 (in Chinese) [刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 67 065201]

    [20]

    Wang Z, Beinke P D, Barnes C W, W M Michael, Mignardot E, Wurden G A, Hsu S C, Intrator T P, Munson C P 2005 Rev. Sci. Instrum. 76 033501

    [21]

    Brown M R, Bailey Iii A D, Bellan P M 1991 J. Appl. Phys. 69 6302-6312

    [22]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21 [25] Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516

    [23]

    Qian M Y, Ren C S, Wang D Z, Zhang J L, Wei G D 2010 J. Appl. Phys. 107 063303

    [24]

    J. Ashkenazy, R. Kipper, M. Caner 1991 Phys. Rev. A 43 5568

    [25]

    Zhao C X, Song J, Qi L W, Ma C Y, Hu J J, Bai X D, Wang D Z 2020 Fusion Eng. Des. 158 111870

    [26]

    Liu S, Huang Y Z, Zhang Y P, Zhan W, Yu M H, Yang L J 2018 Phys. Plasmas 25, 113505

    [27]

    Song J, Lee J W, Bai X D, Zhang J S, Yan H J, Xiao Q M, Wang D Z 2021 Acta Phys. Sin. 70 105201 (in Chinese) [宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真 2021 70 105201]

    [28]

    Chau S W, Hsu K L, Lin D L, Tzeng C C 2007 J. Phys.D: Appl. Phys. 40 1944

  • [1] 张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健. 预填充模式下同轴枪放电等离子体加速模型分析与优化.  , doi: 10.7498/aps.72.20230463
    [2] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程.  , doi: 10.7498/aps.71.20221385
    [3] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响.  , doi: 10.7498/aps.70.20210709
    [4] 宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真. 外电极长度对同轴枪放电等离子体特性的影响.  , doi: 10.7498/aps.70.20201724
    [5] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比.  , doi: 10.7498/aps.69.20191321
    [6] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响.  , doi: 10.7498/aps.68.20190225
    [7] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响.  , doi: 10.7498/aps.68.20190218
    [8] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生. 同轴枪放电等离子体电流片的运动特性研究.  , doi: 10.7498/aps.68.20181832
    [9] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生. 同轴枪脉冲放电等离子体输运过程中密度变化的实验研究.  , doi: 10.7498/aps.66.055203
    [10] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响.  , doi: 10.7498/aps.64.075201
    [11] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究.  , doi: 10.7498/aps.63.205205
    [12] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断.  , doi: 10.7498/aps.62.205208
    [13] 刘月华, 陈明, 刘向东, 崔清强, 赵明文. 透镜到靶材的距离对脉冲激光诱导等离子体的影响机理研究.  , doi: 10.7498/aps.62.025203
    [14] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究.  , doi: 10.7498/aps.61.145201
    [15] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究.  , doi: 10.7498/aps.60.045210
    [16] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究.  , doi: 10.7498/aps.60.085205
    [17] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , doi: 10.7498/aps.60.025203
    [18] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究.  , doi: 10.7498/aps.59.7769
    [19] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术.  , doi: 10.7498/aps.56.2330
    [20] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究.  , doi: 10.7498/aps.54.1653
计量
  • 文章访问数:  154
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2024-08-23

/

返回文章
返回
Baidu
map