搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波谐振腔低气压放电等离子体反应动力学过程

陈泽煜 彭玉彬 王瑞 贺永宁 崔万照

引用本文:
Citation:

微波谐振腔低气压放电等离子体反应动力学过程

陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照

Reaction dynamic process of low pressure discharge plasma in microwave resonant cavity

Chen Ze-Yu, Peng Yu-Bin, Wang Rui, He Yong-Ning, Cui Wan-Zhao
PDF
HTML
导出引用
  • 低气压放电是制约航天器微波部件向大功率、小型化方向发展的重要问题. 针对航天器微波部件低气压放电机理尚不明确的关键问题, 本文搭建了低气压射频放电等离子体发射光谱诊断平台, 对微波腔体谐振器低气压射频放电的等离子体反应动力学过程, 及放电对于微波部件的破坏效应进行研究. 获取不同气体压强条件下谐振器内放电等离子体的发射光谱, 发现等离子体内羟基OH(A-X)、激发态氮分子N2(C-B)及氧原子O(3p5P→3s5S0)的密度随气压升高呈现先上升后下降的变化趋势. 对这一现象所蕴含的等离子体反应动力学机理进行了分析, 发现气体压强可通过改变粒子生成与消耗路径及等离子体平均电子温度的方式对等离子体中各粒子的浓度大小产生影响. 研究了等离子体发射光谱随输入功率的变化规律, 发现了不同气压条件下粒子浓度随输入功率的增大呈线性增长的趋势. 本研究为探明低气压射频放电机理及航天器微波部件的可靠性设计提供了参考依据.
    Low-pressure discharge is an important problem that restricts the development of microwave components of spacecraft toward high-power and miniaturization. To clarify the mechanism of low-pressure discharge of microwave component in spacecraft, we build an emission spectroscopy diagnostic platform for studying the low-pressure radio frequency (RF) discharge plasma, and investigate the plasma reaction dynamics of low-pressure RF discharge of microwave cavity resonator and the damage effect of discharge on microwave component. The emission spectra of the plasma inside the resonator under different gas pressure conditions are obtained, and it is found that the density of hydroxyl OH (A-X), excited nitrogen molecules N2 (C-B) and oxygen atoms O (3p5P→3s5S0) in the plasma each show a first-increasing and then decreasing trend with the increase of gas pressure. The kinetic mechanism of the plasma reaction behind this phenomenon is analyzed, and it is found that the gas pressure can influence the concentration magnitude of each species in the plasma by changing the species production and consumption paths as well as the average electron temperature of the plasma. The variation law of plasma emission spectrum with the input power is studied, and the trends of linear increase of particle concentration with the increase of input power at different air pressures are found. This study provides a reference for investigating the mechanism of low-pressure RF discharge and the reliable design of spacecraft microwave components.
      通信作者: 崔万照, cuiwanzhao@126.com
    • 基金项目: 国家自然科学基金(批准号: 61901361)资助的课题.
      Corresponding author: Cui Wan-Zhao, cuiwanzhao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61901361).
    [1]

    Davis H A, Olson R T, Moir D C 2003 Phys. Plasmas 10 3351Google Scholar

    [2]

    蔡利兵, 王建国 2011 60 025217Google Scholar

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217Google Scholar

    [3]

    刘雷, 李永东, 王瑞, 崔万照, 刘纯亮 2013 62 025201Google Scholar

    Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201Google Scholar

    [4]

    崔万照, 李韵, 张洪太 2019 航天器微波部件微放电分析及其应用 (北京: 北京理工大学出版社) 第1—20页

    Cui W Z, Li Y, Zhang H T 2019 Simulation Method of Multipactor and its Application in Satellite Microwave Components (Beijing: Beijing Institute of Technology Press) pp1–20 (in Chinese)

    [5]

    翁明, 谢少毅, 殷明, 曹猛 2020 69 087901Google Scholar

    Weng M, Xie S Y, Yin M, Cao M 2020 Acta Phys. Sin. 69 087901Google Scholar

    [6]

    王瑞, 张娜, 李韵, 胡天存, 王新波, 崔万照 2015 空间电子技术 1 001Google Scholar

    Wang R, Zhang N, Li Y, Hu T C, Wang X B, Cui W Z 2015 Space Electron. Technol. 1 001Google Scholar

    [7]

    Mrozek K, Dyreych T, Molis P, Daniel V, Obrusnik A 2021 Plasma Sources Sci. Technol. 30 125007Google Scholar

    [8]

    张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达 2020 69 185201Google Scholar

    Zhang Y G, Liu H T, Gao Q, Zhu Z F, Li B, Wang Y D 2020 Acta Phys. Sin. 69 185201Google Scholar

    [9]

    王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜 2021 70 095211Google Scholar

    Wang Y F, Zhu X M, Zhang M Z, Meng S F, Jia J W, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211Google Scholar

    [10]

    Thiyagarajan M, Sarani A, Nicula C 2013 J. Appl. Phys. 113 233302Google Scholar

    [11]

    张秩凡, 高俊, 雷鹏, 周素素, 王新兵, 左都罗 2018 67 145202Google Scholar

    Zhang Z F, Gao J, Lei P, Zhou S S, Wang X B, Zuo D L 2018 Acta Phys. Sin. 67 145202Google Scholar

    [12]

    李百慧, 高勋, 宋超, 林景全 2016 65 235201Google Scholar

    Li B H, G X, Song C, Lin J Q 2016 Acta Phys. Sin. 65 235201Google Scholar

    [13]

    Deng X L, Nikiforov A Y, Vanraes P, Leys C 2013 J. Appl. Phys. 113 023305Google Scholar

    [14]

    Greve C M, Hara K 2022 J. Phys. D Appl. Phys. 55 255201Google Scholar

    [15]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Moefill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [16]

    Peng Y K, Chen X Y, Deng Z Q, Lan L, Zhan H Y, Pei X K, Chen J H, Yuan Y K, Wen X S 2022 Plasma Sci. Technol. 24 055404Google Scholar

    [17]

    Capitelli M, Ferreira C M, Gordiets B F, Osipov A I 2000 Plasma Kinetics in Atmospheric Gases (Berlin: Splinger)

    [18]

    Sieck L W, Herron J T, Green D S 2000 Plasma Chem. Plasma Process. 20 235Google Scholar

    [19]

    Herron J T, Green D S 2001 Plasma Chem. Plasma Process. 21 459Google Scholar

    [20]

    蓝朝晖, 胡希伟, 刘明海 2011 60 025205Google Scholar

    Lan Z H, Hu X W, Liu M H 2011 Acta Phys. Sin. 60 025205Google Scholar

    [21]

    朱国强, Jean-Pierre Boeuf, 李进贤 2012 61 235202Google Scholar

    Zhu G Q, Boeuf J P, Li J X 2012 Acta Phys. Sin. 61 235202Google Scholar

    [22]

    Sun B W, Liu D X, Liu Y F, Luo S T, Zhang M Y, Zhang J S, Yang A J, Wang X H, Rong M Z 2021 J. Appl. Phys. 130 093303Google Scholar

    [23]

    Sun B W, Liu D X, Iza F, Wang S, Yang A J, Liu Z J, Rong M Z, Wang X H 2019 Plasma Sources Sci. Technol. 28 035006Google Scholar

    [24]

    Zhang H, Guo Y, Liu D X, Sun B W, Liu Y F, Yang A J, Wang X H, Wu Y 2018 Phys. Plasmas 25 073508Google Scholar

    [25]

    Liu Y F, Liu D X, Zhang J S, Sun B W, Yang A J, Kong M G 2020 Phys. Plasmas 27 043512Google Scholar

    [26]

    Rowntree P, Parenteau L, Sanche L 1991 J. Chem. Phys. 94 8570Google Scholar

    [27]

    Hetaba W, Mogilatenko A, Neumann W 2010 Micron 41 479Google Scholar

    [28]

    Zhang B Y, Wang Q, Zhang G X, Liao S S 2014 J. Appl. Phys. 115 043302Google Scholar

    [29]

    Chen Z Y, Liu D X, Chen C, Xu D H, Liu Z J, Xia W J, Rong M Z, Kong M G 2018 J. Phys. D Appl. Phys. 51 325201Google Scholar

    [30]

    Chen Z Y, Liu D X, Xu H, Xia W J, Liu Z J, Xu D H, Rong M Z, Kong M G 2019 Plasma Sources Sci. Technol. 28 025001Google Scholar

    [31]

    Naz M Y, Shukrullah S, Rehman S U, Khan Y, Al-Arainy A A, Meer R 2021 Sci. Rep. 11 2896Google Scholar

    [32]

    孙博文 2022 博士学位论文 (西安: 西安交通大学)

    Sun B W 2022 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [33]

    Zhu X M, Pu Y K 2010 J. Phys. D Appl. Phys. 43 403001Google Scholar

    [34]

    Liu Y F, Liu D X, Zhang J S, Sun B W, Luo S T, Zhang H, Guo L, Rong M Z, Kong M G 2021 AIP Advances 11 055019Google Scholar

    [35]

    Paris P, Raud J, Plank T, Erme K, Jgi I 2021 J. Phys. D: Appl. Phys. 54 465201Google Scholar

    [36]

    Gole J L, Woodward R, Hayden J S, Dixon D A 1985 J. Phys. Chem. 89 4905Google Scholar

    [37]

    Johnston H L, Cuta F, Garrett A B 2002 J. Am. Chem. Soc. 55 2311Google Scholar

  • 图 1  低气压放电等离子体光谱诊断平台结构示意图

    Fig. 1.  Schematic illustration of the experimental setup for the low-pressure discharge plasma diagnosis.

    图 2  谐振腔内部结构示意图

    Fig. 2.  Geometry structure of the cavity resonator.

    图 3  谐振腔开孔前和开孔后的S参数仿真结果

    Fig. 3.  Simulated S parameter of the cavity resonator with and without the probe hole.

    图 4  谐振腔开孔前和开孔后的电场分布仿真结果

    Fig. 4.  Simulated electric field distribution of the cavity resonator with and without the probe hole.

    图 5  不同气压条件下谐振腔的放电功率阈值

    Fig. 5.  Discharge power threshold of the resonant cavity under different air pressure conditions.

    图 6  气压为500 Pa时谐振腔内放电等离子体的发射光谱

    Fig. 6.  Emission spectrum of the plasma in the cavity when the gas pressure is 500 Pa.

    图 7  不同气压条件下的等离子体发射光谱

    Fig. 7.  Emission spectrum of the plasma under different gas pressure.

    图 8  O(3p5P→3s5S0), N2(C-B)及OH(A-X)的发射谱线强度随气压增大的变化趋势

    Fig. 8.  Trend of the emission intensity of O(3p5P→3s5S0), N2(C-B) and OH(A-X) with the increase of the gas pressure.

    图 9  相对湿度为20%的空气等离子体中不同平均电子温度Te下的电子能量分布函数

    Fig. 9.  Electron energy distribution function at different Te in air plasma with relative humidity of 20%.

    图 10  不同输入功率条件下等离子体的发射光谱

    Fig. 10.  Emission spectrum of the plasma under different input power.

    图 11  不同气压条件下粒子发射谱线强度随输入功率增加的变化趋势 (a) O(3p5P→3s5S0); (b) OH(A-X)

    Fig. 11.  Trend of the emission intensity with the increase of the gas pressure under different pressure: (a) O(3p5P→3s5S0); (b) OH(A-X).

    图 12  光谱测试前后谐振腔S21参数检测结果

    Fig. 12.  Tested S21 parameters of the cavity resonator before and after discharge.

    图 13  放电对腔体内部造成的烧蚀痕迹

    Fig. 13.  Erosion marks caused by discharge inside the cavity resonator.

    Baidu
  • [1]

    Davis H A, Olson R T, Moir D C 2003 Phys. Plasmas 10 3351Google Scholar

    [2]

    蔡利兵, 王建国 2011 60 025217Google Scholar

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217Google Scholar

    [3]

    刘雷, 李永东, 王瑞, 崔万照, 刘纯亮 2013 62 025201Google Scholar

    Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201Google Scholar

    [4]

    崔万照, 李韵, 张洪太 2019 航天器微波部件微放电分析及其应用 (北京: 北京理工大学出版社) 第1—20页

    Cui W Z, Li Y, Zhang H T 2019 Simulation Method of Multipactor and its Application in Satellite Microwave Components (Beijing: Beijing Institute of Technology Press) pp1–20 (in Chinese)

    [5]

    翁明, 谢少毅, 殷明, 曹猛 2020 69 087901Google Scholar

    Weng M, Xie S Y, Yin M, Cao M 2020 Acta Phys. Sin. 69 087901Google Scholar

    [6]

    王瑞, 张娜, 李韵, 胡天存, 王新波, 崔万照 2015 空间电子技术 1 001Google Scholar

    Wang R, Zhang N, Li Y, Hu T C, Wang X B, Cui W Z 2015 Space Electron. Technol. 1 001Google Scholar

    [7]

    Mrozek K, Dyreych T, Molis P, Daniel V, Obrusnik A 2021 Plasma Sources Sci. Technol. 30 125007Google Scholar

    [8]

    张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达 2020 69 185201Google Scholar

    Zhang Y G, Liu H T, Gao Q, Zhu Z F, Li B, Wang Y D 2020 Acta Phys. Sin. 69 185201Google Scholar

    [9]

    王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜 2021 70 095211Google Scholar

    Wang Y F, Zhu X M, Zhang M Z, Meng S F, Jia J W, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211Google Scholar

    [10]

    Thiyagarajan M, Sarani A, Nicula C 2013 J. Appl. Phys. 113 233302Google Scholar

    [11]

    张秩凡, 高俊, 雷鹏, 周素素, 王新兵, 左都罗 2018 67 145202Google Scholar

    Zhang Z F, Gao J, Lei P, Zhou S S, Wang X B, Zuo D L 2018 Acta Phys. Sin. 67 145202Google Scholar

    [12]

    李百慧, 高勋, 宋超, 林景全 2016 65 235201Google Scholar

    Li B H, G X, Song C, Lin J Q 2016 Acta Phys. Sin. 65 235201Google Scholar

    [13]

    Deng X L, Nikiforov A Y, Vanraes P, Leys C 2013 J. Appl. Phys. 113 023305Google Scholar

    [14]

    Greve C M, Hara K 2022 J. Phys. D Appl. Phys. 55 255201Google Scholar

    [15]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Moefill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [16]

    Peng Y K, Chen X Y, Deng Z Q, Lan L, Zhan H Y, Pei X K, Chen J H, Yuan Y K, Wen X S 2022 Plasma Sci. Technol. 24 055404Google Scholar

    [17]

    Capitelli M, Ferreira C M, Gordiets B F, Osipov A I 2000 Plasma Kinetics in Atmospheric Gases (Berlin: Splinger)

    [18]

    Sieck L W, Herron J T, Green D S 2000 Plasma Chem. Plasma Process. 20 235Google Scholar

    [19]

    Herron J T, Green D S 2001 Plasma Chem. Plasma Process. 21 459Google Scholar

    [20]

    蓝朝晖, 胡希伟, 刘明海 2011 60 025205Google Scholar

    Lan Z H, Hu X W, Liu M H 2011 Acta Phys. Sin. 60 025205Google Scholar

    [21]

    朱国强, Jean-Pierre Boeuf, 李进贤 2012 61 235202Google Scholar

    Zhu G Q, Boeuf J P, Li J X 2012 Acta Phys. Sin. 61 235202Google Scholar

    [22]

    Sun B W, Liu D X, Liu Y F, Luo S T, Zhang M Y, Zhang J S, Yang A J, Wang X H, Rong M Z 2021 J. Appl. Phys. 130 093303Google Scholar

    [23]

    Sun B W, Liu D X, Iza F, Wang S, Yang A J, Liu Z J, Rong M Z, Wang X H 2019 Plasma Sources Sci. Technol. 28 035006Google Scholar

    [24]

    Zhang H, Guo Y, Liu D X, Sun B W, Liu Y F, Yang A J, Wang X H, Wu Y 2018 Phys. Plasmas 25 073508Google Scholar

    [25]

    Liu Y F, Liu D X, Zhang J S, Sun B W, Yang A J, Kong M G 2020 Phys. Plasmas 27 043512Google Scholar

    [26]

    Rowntree P, Parenteau L, Sanche L 1991 J. Chem. Phys. 94 8570Google Scholar

    [27]

    Hetaba W, Mogilatenko A, Neumann W 2010 Micron 41 479Google Scholar

    [28]

    Zhang B Y, Wang Q, Zhang G X, Liao S S 2014 J. Appl. Phys. 115 043302Google Scholar

    [29]

    Chen Z Y, Liu D X, Chen C, Xu D H, Liu Z J, Xia W J, Rong M Z, Kong M G 2018 J. Phys. D Appl. Phys. 51 325201Google Scholar

    [30]

    Chen Z Y, Liu D X, Xu H, Xia W J, Liu Z J, Xu D H, Rong M Z, Kong M G 2019 Plasma Sources Sci. Technol. 28 025001Google Scholar

    [31]

    Naz M Y, Shukrullah S, Rehman S U, Khan Y, Al-Arainy A A, Meer R 2021 Sci. Rep. 11 2896Google Scholar

    [32]

    孙博文 2022 博士学位论文 (西安: 西安交通大学)

    Sun B W 2022 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [33]

    Zhu X M, Pu Y K 2010 J. Phys. D Appl. Phys. 43 403001Google Scholar

    [34]

    Liu Y F, Liu D X, Zhang J S, Sun B W, Luo S T, Zhang H, Guo L, Rong M Z, Kong M G 2021 AIP Advances 11 055019Google Scholar

    [35]

    Paris P, Raud J, Plank T, Erme K, Jgi I 2021 J. Phys. D: Appl. Phys. 54 465201Google Scholar

    [36]

    Gole J L, Woodward R, Hayden J S, Dixon D A 1985 J. Phys. Chem. 89 4905Google Scholar

    [37]

    Johnston H L, Cuta F, Garrett A B 2002 J. Am. Chem. Soc. 55 2311Google Scholar

  • [1] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰. 辅助放电下刷状空气等离子体羽的放电特性和参数诊断.  , 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [2] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性.  , 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [3] 朱海龙, 师玉军, 王嘉伟, 张志凌, 高一宁, 张丰博. 高气压氩气辉光放电条纹等离子体的形成和演化.  , 2022, 71(14): 145201. doi: 10.7498/aps.71.20212394
    [4] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英. 大气压氩气刷形等离子体羽的特性研究.  , 2021, 70(15): 155201. doi: 10.7498/aps.70.20202091
    [5] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡.  , 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [6] 宋玮, 邵浩, 张治强, 黄惠军, 李佳伟, 王康懿, 景洪, 刘英君, 崔新红. 射频击穿等离子体对高功率微波传输特性的影响.  , 2014, 63(6): 064101. doi: 10.7498/aps.63.064101
    [7] 黄骏, 陈维, 李辉, 王鹏业, 杨思泽. 大气压冷等离子体射流灭活子宫颈癌Hela细胞.  , 2013, 62(6): 065201. doi: 10.7498/aps.62.065201
    [8] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断.  , 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [9] 刘月华, 陈明, 刘向东, 崔清强, 赵明文. 透镜到靶材的距离对脉冲激光诱导等离子体的影响机理研究.  , 2013, 62(2): 025203. doi: 10.7498/aps.62.025203
    [10] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究.  , 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [11] 倪明江, 余量, 李晓东, 屠昕, 汪宇, 严建华. 大气压直流滑动弧等离子体工作特性研究.  , 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [12] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究.  , 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [13] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究.  , 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [14] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究.  , 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [15] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [16] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断.  , 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [17] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究.  , 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [18] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究.  , 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [19] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术.  , 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [20] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究.  , 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
计量
  • 文章访问数:  4250
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 修回日期:  2022-08-31
  • 上网日期:  2022-12-01
  • 刊出日期:  2022-12-24

/

返回文章
返回
Baidu
map