-
低气压放电是制约航天器微波部件向大功率、小型化方向发展的重要问题. 针对航天器微波部件低气压放电机理尚不明确的关键问题, 本文搭建了低气压射频放电等离子体发射光谱诊断平台, 对微波腔体谐振器低气压射频放电的等离子体反应动力学过程, 及放电对于微波部件的破坏效应进行研究. 获取不同气体压强条件下谐振器内放电等离子体的发射光谱, 发现等离子体内羟基OH(A-X)、激发态氮分子N2(C-B)及氧原子O(3p5P→3s5S0)的密度随气压升高呈现先上升后下降的变化趋势. 对这一现象所蕴含的等离子体反应动力学机理进行了分析, 发现气体压强可通过改变粒子生成与消耗路径及等离子体平均电子温度的方式对等离子体中各粒子的浓度大小产生影响. 研究了等离子体发射光谱随输入功率的变化规律, 发现了不同气压条件下粒子浓度随输入功率的增大呈线性增长的趋势. 本研究为探明低气压射频放电机理及航天器微波部件的可靠性设计提供了参考依据.Low-pressure discharge is an important problem that restricts the development of microwave components of spacecraft toward high-power and miniaturization. To clarify the mechanism of low-pressure discharge of microwave component in spacecraft, we build an emission spectroscopy diagnostic platform for studying the low-pressure radio frequency (RF) discharge plasma, and investigate the plasma reaction dynamics of low-pressure RF discharge of microwave cavity resonator and the damage effect of discharge on microwave component. The emission spectra of the plasma inside the resonator under different gas pressure conditions are obtained, and it is found that the density of hydroxyl OH (A-X), excited nitrogen molecules N2 (C-B) and oxygen atoms O (3p5P→3s5S0) in the plasma each show a first-increasing and then decreasing trend with the increase of gas pressure. The kinetic mechanism of the plasma reaction behind this phenomenon is analyzed, and it is found that the gas pressure can influence the concentration magnitude of each species in the plasma by changing the species production and consumption paths as well as the average electron temperature of the plasma. The variation law of plasma emission spectrum with the input power is studied, and the trends of linear increase of particle concentration with the increase of input power at different air pressures are found. This study provides a reference for investigating the mechanism of low-pressure RF discharge and the reliable design of spacecraft microwave components.
-
Keywords:
- spacecraft microwave components /
- radio frequency low pressure discharge /
- plasma /
- emission spectra
[1] Davis H A, Olson R T, Moir D C 2003 Phys. Plasmas 10 3351Google Scholar
[2] 蔡利兵, 王建国 2011 60 025217Google Scholar
Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217Google Scholar
[3] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮 2013 62 025201Google Scholar
Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201Google Scholar
[4] 崔万照, 李韵, 张洪太 2019 航天器微波部件微放电分析及其应用 (北京: 北京理工大学出版社) 第1—20页
Cui W Z, Li Y, Zhang H T 2019 Simulation Method of Multipactor and its Application in Satellite Microwave Components (Beijing: Beijing Institute of Technology Press) pp1–20 (in Chinese)
[5] 翁明, 谢少毅, 殷明, 曹猛 2020 69 087901Google Scholar
Weng M, Xie S Y, Yin M, Cao M 2020 Acta Phys. Sin. 69 087901Google Scholar
[6] 王瑞, 张娜, 李韵, 胡天存, 王新波, 崔万照 2015 空间电子技术 1 001Google Scholar
Wang R, Zhang N, Li Y, Hu T C, Wang X B, Cui W Z 2015 Space Electron. Technol. 1 001Google Scholar
[7] Mrozek K, Dyreych T, Molis P, Daniel V, Obrusnik A 2021 Plasma Sources Sci. Technol. 30 125007Google Scholar
[8] 张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达 2020 69 185201Google Scholar
Zhang Y G, Liu H T, Gao Q, Zhu Z F, Li B, Wang Y D 2020 Acta Phys. Sin. 69 185201Google Scholar
[9] 王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜 2021 70 095211Google Scholar
Wang Y F, Zhu X M, Zhang M Z, Meng S F, Jia J W, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211Google Scholar
[10] Thiyagarajan M, Sarani A, Nicula C 2013 J. Appl. Phys. 113 233302Google Scholar
[11] 张秩凡, 高俊, 雷鹏, 周素素, 王新兵, 左都罗 2018 67 145202Google Scholar
Zhang Z F, Gao J, Lei P, Zhou S S, Wang X B, Zuo D L 2018 Acta Phys. Sin. 67 145202Google Scholar
[12] 李百慧, 高勋, 宋超, 林景全 2016 65 235201Google Scholar
Li B H, G X, Song C, Lin J Q 2016 Acta Phys. Sin. 65 235201Google Scholar
[13] Deng X L, Nikiforov A Y, Vanraes P, Leys C 2013 J. Appl. Phys. 113 023305Google Scholar
[14] Greve C M, Hara K 2022 J. Phys. D Appl. Phys. 55 255201Google Scholar
[15] Sakiyama Y, Graves D B, Chang H W, Shimizu T, Moefill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar
[16] Peng Y K, Chen X Y, Deng Z Q, Lan L, Zhan H Y, Pei X K, Chen J H, Yuan Y K, Wen X S 2022 Plasma Sci. Technol. 24 055404Google Scholar
[17] Capitelli M, Ferreira C M, Gordiets B F, Osipov A I 2000 Plasma Kinetics in Atmospheric Gases (Berlin: Splinger)
[18] Sieck L W, Herron J T, Green D S 2000 Plasma Chem. Plasma Process. 20 235Google Scholar
[19] Herron J T, Green D S 2001 Plasma Chem. Plasma Process. 21 459Google Scholar
[20] 蓝朝晖, 胡希伟, 刘明海 2011 60 025205Google Scholar
Lan Z H, Hu X W, Liu M H 2011 Acta Phys. Sin. 60 025205Google Scholar
[21] 朱国强, Jean-Pierre Boeuf, 李进贤 2012 61 235202Google Scholar
Zhu G Q, Boeuf J P, Li J X 2012 Acta Phys. Sin. 61 235202Google Scholar
[22] Sun B W, Liu D X, Liu Y F, Luo S T, Zhang M Y, Zhang J S, Yang A J, Wang X H, Rong M Z 2021 J. Appl. Phys. 130 093303Google Scholar
[23] Sun B W, Liu D X, Iza F, Wang S, Yang A J, Liu Z J, Rong M Z, Wang X H 2019 Plasma Sources Sci. Technol. 28 035006Google Scholar
[24] Zhang H, Guo Y, Liu D X, Sun B W, Liu Y F, Yang A J, Wang X H, Wu Y 2018 Phys. Plasmas 25 073508Google Scholar
[25] Liu Y F, Liu D X, Zhang J S, Sun B W, Yang A J, Kong M G 2020 Phys. Plasmas 27 043512Google Scholar
[26] Rowntree P, Parenteau L, Sanche L 1991 J. Chem. Phys. 94 8570Google Scholar
[27] Hetaba W, Mogilatenko A, Neumann W 2010 Micron 41 479Google Scholar
[28] Zhang B Y, Wang Q, Zhang G X, Liao S S 2014 J. Appl. Phys. 115 043302Google Scholar
[29] Chen Z Y, Liu D X, Chen C, Xu D H, Liu Z J, Xia W J, Rong M Z, Kong M G 2018 J. Phys. D Appl. Phys. 51 325201Google Scholar
[30] Chen Z Y, Liu D X, Xu H, Xia W J, Liu Z J, Xu D H, Rong M Z, Kong M G 2019 Plasma Sources Sci. Technol. 28 025001Google Scholar
[31] Naz M Y, Shukrullah S, Rehman S U, Khan Y, Al-Arainy A A, Meer R 2021 Sci. Rep. 11 2896Google Scholar
[32] 孙博文 2022 博士学位论文 (西安: 西安交通大学)
Sun B W 2022 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)
[33] Zhu X M, Pu Y K 2010 J. Phys. D Appl. Phys. 43 403001Google Scholar
[34] Liu Y F, Liu D X, Zhang J S, Sun B W, Luo S T, Zhang H, Guo L, Rong M Z, Kong M G 2021 AIP Advances 11 055019Google Scholar
[35] Paris P, Raud J, Plank T, Erme K, Jgi I 2021 J. Phys. D: Appl. Phys. 54 465201Google Scholar
[36] Gole J L, Woodward R, Hayden J S, Dixon D A 1985 J. Phys. Chem. 89 4905Google Scholar
[37] Johnston H L, Cuta F, Garrett A B 2002 J. Am. Chem. Soc. 55 2311Google Scholar
-
-
[1] Davis H A, Olson R T, Moir D C 2003 Phys. Plasmas 10 3351Google Scholar
[2] 蔡利兵, 王建国 2011 60 025217Google Scholar
Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217Google Scholar
[3] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮 2013 62 025201Google Scholar
Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201Google Scholar
[4] 崔万照, 李韵, 张洪太 2019 航天器微波部件微放电分析及其应用 (北京: 北京理工大学出版社) 第1—20页
Cui W Z, Li Y, Zhang H T 2019 Simulation Method of Multipactor and its Application in Satellite Microwave Components (Beijing: Beijing Institute of Technology Press) pp1–20 (in Chinese)
[5] 翁明, 谢少毅, 殷明, 曹猛 2020 69 087901Google Scholar
Weng M, Xie S Y, Yin M, Cao M 2020 Acta Phys. Sin. 69 087901Google Scholar
[6] 王瑞, 张娜, 李韵, 胡天存, 王新波, 崔万照 2015 空间电子技术 1 001Google Scholar
Wang R, Zhang N, Li Y, Hu T C, Wang X B, Cui W Z 2015 Space Electron. Technol. 1 001Google Scholar
[7] Mrozek K, Dyreych T, Molis P, Daniel V, Obrusnik A 2021 Plasma Sources Sci. Technol. 30 125007Google Scholar
[8] 张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达 2020 69 185201Google Scholar
Zhang Y G, Liu H T, Gao Q, Zhu Z F, Li B, Wang Y D 2020 Acta Phys. Sin. 69 185201Google Scholar
[9] 王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜 2021 70 095211Google Scholar
Wang Y F, Zhu X M, Zhang M Z, Meng S F, Jia J W, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211Google Scholar
[10] Thiyagarajan M, Sarani A, Nicula C 2013 J. Appl. Phys. 113 233302Google Scholar
[11] 张秩凡, 高俊, 雷鹏, 周素素, 王新兵, 左都罗 2018 67 145202Google Scholar
Zhang Z F, Gao J, Lei P, Zhou S S, Wang X B, Zuo D L 2018 Acta Phys. Sin. 67 145202Google Scholar
[12] 李百慧, 高勋, 宋超, 林景全 2016 65 235201Google Scholar
Li B H, G X, Song C, Lin J Q 2016 Acta Phys. Sin. 65 235201Google Scholar
[13] Deng X L, Nikiforov A Y, Vanraes P, Leys C 2013 J. Appl. Phys. 113 023305Google Scholar
[14] Greve C M, Hara K 2022 J. Phys. D Appl. Phys. 55 255201Google Scholar
[15] Sakiyama Y, Graves D B, Chang H W, Shimizu T, Moefill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar
[16] Peng Y K, Chen X Y, Deng Z Q, Lan L, Zhan H Y, Pei X K, Chen J H, Yuan Y K, Wen X S 2022 Plasma Sci. Technol. 24 055404Google Scholar
[17] Capitelli M, Ferreira C M, Gordiets B F, Osipov A I 2000 Plasma Kinetics in Atmospheric Gases (Berlin: Splinger)
[18] Sieck L W, Herron J T, Green D S 2000 Plasma Chem. Plasma Process. 20 235Google Scholar
[19] Herron J T, Green D S 2001 Plasma Chem. Plasma Process. 21 459Google Scholar
[20] 蓝朝晖, 胡希伟, 刘明海 2011 60 025205Google Scholar
Lan Z H, Hu X W, Liu M H 2011 Acta Phys. Sin. 60 025205Google Scholar
[21] 朱国强, Jean-Pierre Boeuf, 李进贤 2012 61 235202Google Scholar
Zhu G Q, Boeuf J P, Li J X 2012 Acta Phys. Sin. 61 235202Google Scholar
[22] Sun B W, Liu D X, Liu Y F, Luo S T, Zhang M Y, Zhang J S, Yang A J, Wang X H, Rong M Z 2021 J. Appl. Phys. 130 093303Google Scholar
[23] Sun B W, Liu D X, Iza F, Wang S, Yang A J, Liu Z J, Rong M Z, Wang X H 2019 Plasma Sources Sci. Technol. 28 035006Google Scholar
[24] Zhang H, Guo Y, Liu D X, Sun B W, Liu Y F, Yang A J, Wang X H, Wu Y 2018 Phys. Plasmas 25 073508Google Scholar
[25] Liu Y F, Liu D X, Zhang J S, Sun B W, Yang A J, Kong M G 2020 Phys. Plasmas 27 043512Google Scholar
[26] Rowntree P, Parenteau L, Sanche L 1991 J. Chem. Phys. 94 8570Google Scholar
[27] Hetaba W, Mogilatenko A, Neumann W 2010 Micron 41 479Google Scholar
[28] Zhang B Y, Wang Q, Zhang G X, Liao S S 2014 J. Appl. Phys. 115 043302Google Scholar
[29] Chen Z Y, Liu D X, Chen C, Xu D H, Liu Z J, Xia W J, Rong M Z, Kong M G 2018 J. Phys. D Appl. Phys. 51 325201Google Scholar
[30] Chen Z Y, Liu D X, Xu H, Xia W J, Liu Z J, Xu D H, Rong M Z, Kong M G 2019 Plasma Sources Sci. Technol. 28 025001Google Scholar
[31] Naz M Y, Shukrullah S, Rehman S U, Khan Y, Al-Arainy A A, Meer R 2021 Sci. Rep. 11 2896Google Scholar
[32] 孙博文 2022 博士学位论文 (西安: 西安交通大学)
Sun B W 2022 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)
[33] Zhu X M, Pu Y K 2010 J. Phys. D Appl. Phys. 43 403001Google Scholar
[34] Liu Y F, Liu D X, Zhang J S, Sun B W, Luo S T, Zhang H, Guo L, Rong M Z, Kong M G 2021 AIP Advances 11 055019Google Scholar
[35] Paris P, Raud J, Plank T, Erme K, Jgi I 2021 J. Phys. D: Appl. Phys. 54 465201Google Scholar
[36] Gole J L, Woodward R, Hayden J S, Dixon D A 1985 J. Phys. Chem. 89 4905Google Scholar
[37] Johnston H L, Cuta F, Garrett A B 2002 J. Am. Chem. Soc. 55 2311Google Scholar
计量
- 文章访问数: 4250
- PDF下载量: 73
- 被引次数: 0