-
磁化同轴枪放电装置可以产生高传输速度、高电子密度的球马克, 在可控核聚变、高能量密度物理以及天体物理等领域均得到了广泛关注. 基于球马克形成阈值理论, 通过对放电图像的拍摄以及光、电、磁信号的诊断分析, 本文主要研究了磁化同轴枪操作参数对球马克产生及等离子体特性的影响. 实验结果发现: 除放电电流和偏置磁通的比值以外, 受送气时长控制的气体分布长度同样是球马克产生的关键. 电极间通道内较长的气体分布可以使放电产生集中承载电流的等离子体环, 该环能够在足够强的磁压力推动下完成磁场拉伸与重联以形成球马克. 增加放电电流可以同时带来球马克传输速度、电子温度以及密度的提升, 而增加送气量仅对电子密度提升具有正面影响, 球马克性能优化的关键在于提升电容器组向等离子体环的能量馈入.Spheromak plasma formed by a magnetized coaxial plasma gun possesses high propagation velocity and electron density, which has been extensively investigated, for it has a variety of applications, such as fueling of fusion reactor, magnetized target fusion, and labratory simulations of astrophysical phenomena. Formation and optimization of the gun-type spheromak are studied by investigating the discharge characteristics of the gun and the scaling of plasma parameters with various operation conditions. Based on the spheromak formation mechanism, several significant operation parameters are identified, including peak value of gun current, bias flux, gas-puffed mass and the length of neutral gas distribution inside the gun channel: this length can be controlled by adjusting the time delay between gas injection and discharge of the capacitor bank to initiate gas breakdown and for a long time delay the current path distribution inside the gun channel can be characterized by a moving plasma ring which carries almost all of the gun current. Under a sufficient pressure of the self-generated field, the moving plasma ring with freezed toroidal field pushes the bias field into the vacuum chamber, the twisted field lines are then broken, reconnected, and thus forming a free spheromak. The injected gas is desired to exist only in the gun channel: if downstream region of the gun is filled with neutral gas, a weakly ionized and cold spheromak will be formed, which is not beneficial to practical applications. The multiple current path phenomenon is observed using two spatially separated magnetic coils inside the gun channel, excepting for the plasma ring, there are a stagnant current path and a reversed current path separately located in upstream and middle region of the gun channel. Development of the upstream current path is due to the residual charged particles deteached from the tail of accelerated plasma ring and the unswept netural particles, which reduces the energy injected into the plasma ring from capacitor bank, and thus having a negative effect on the performance of spheormak. The axial propagation velocity of spheromak, electron temperature and density are shown to increase with the capacitor bank voltage rising, which can be attributed to the elevation in energy injected into the plasma ring. Only higher electron density is obatined by increasing the gas-puffed mass, and the propagation velocity and electron temperature are observed to decrease. The energy injected into the plasma ring is independent of the gas-puffed mass, and electron density is elevated with gas-puffed mass increasing. Since the frequency of electron impact ionization increases, electrons undergo more collisions and transfer more energy to other particle species, thus the thermal energy of electrons decreases.
-
Keywords:
- magnetized coaxial plasma gun /
- spheromak /
- plasma /
- magnetic field
[1] Rosenbluth M N, Bussac M N 1979 Nucl. Fusion 19 489
Google Scholar
[2] Raman R, Martin F, Quirion B, St-Onge M, Lachambre J L, Michaud D, Sawatzky B, Thomas J, Hirose A, Hwang D, Richard N, Côté C, Abel G, Pinsonneault D, Gauvreau J L, Stansfield B, Décoste R, Côté A, Zuzak W, Boucher C 1994 Phys. Rev. Lett. 73 3101
Google Scholar
[3] Fukumoto N, Inoo Y, Nomura M, Nagata M, Uyama T, Ogawa H, Kimura H, Uehara U, Shibata T, Kashiwa Y, Suzuki S, Kasai S, Group J M 2004 Nucl. Fusion 44 982
Google Scholar
[4] Liu D, Xiao C, Hirose A 2008 Rev. Sci. Instrum. 79 013502
Google Scholar
[5] Brown M, Gelber K, Mebratu M 2020 Plasma 3 27
Google Scholar
[6] Yamada M, Ono Y, Hayakawa A, Katsurai M, Perkins F W 1990 Phys. Rev. Lett. 65 721
Google Scholar
[7] Chai K-B, Zhai X, Bellan P M 2016 Phys. Plasmas 23 032122
Google Scholar
[8] Howard S, Laberge M, McIlwraith L, Richardson D, Gregson J 2009 J. Fusion Energy 28 156
Google Scholar
[9] Degnan J H, Peterkin R E, Baca G P, Beason J D, Bell D E, Dearborn M E, Dietz D, Douglas M R, Englert S E, Englert T J, Hackett K E, Holmes J H, Hussey T W, Kiuttu G F, Lehr F M, Marklin G J, Mullins B W, Price D W, Roderick N F, Ruden E L, Sovinec C R, Turchi P J, Bird G, Coffey S K, Seiler S W, Chen Y G, Gale D, Graham J D, Scott M, Sommars W 1993 Phys. Fluids B 5 2938
Google Scholar
[10] Dietz D, Hussey T W, Roderick N F, Douglas M R, Degnan J H 1997 Phys. Plasmas 4 873
Google Scholar
[11] Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232
Google Scholar
[12] Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233
Google Scholar
[13] Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709
Google Scholar
[14] Hsu S C, Bellan P M 2005 Phys. Plasmas 12 032103
Google Scholar
[15] Turner W C, Goldenbaum G C, Granneman E H A, Hammer J H, Hartman C W, Prono D S, Taska J 1983 Phys. Fluids 26 1965
Google Scholar
[16] Barnes C W, Jarboe T R, Henins I, Sherwood A R, Knox S O, Gribble R, Hoida H W, Klingner P L, Lilliequist C G, Linford R K, Platts D A, Spencer R L, Tuszewski M 1984 Nucl. Fusion 24 267
Google Scholar
[17] Taylor J B 1986 Rev. Mod. Phys. 58 741
Google Scholar
[18] Barnes C W, Fernández J C, Henins I, Hoida H W, Jarboe T R, Knox S O, Marklin G J, McKenna K F 1986 Phys. Fluids 29 3415
Google Scholar
[19] Jarboe T R 1994 Plasma Phys. Controlled Fusion 36 945
Google Scholar
[20] Hsu S C, Bellan P M 2003 Phys. Rev. Lett. 90 215002
Google Scholar
[21] Baker K L, Hwang D Q, Evans R W, Horton R D, McLean H S, Terry S D, Howard S, DiCaprio C J 2002 Nucl. Fusion 42 94
Google Scholar
[22] Edo T, Asai T, Tanaka F, Yamada S, Hosozawa A, Kaminou Y, Gota H, Roche T, Allfrey I, Osin D, Smith R, Binderbauer M, Matsumoto T, Tajima T 2018 Plasma Fusion Res. 13 3405062
Google Scholar
[23] Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512
Google Scholar
[24] Brown M R, Bailey Ⅲ A D, Bellan P M 1991 J. Appl. Phys. 69 6302
Google Scholar
[25] Kaur M, Gelber K D, Light A D, Brown M R 2018 Plasma 1 229
Google Scholar
[26] Rusbridge M G, Gee S J, Browning P K, Cunningham G, Duck R C, al-Karkhy A, Martin R, Bradley J W 1997 Plasma Phys. Controlled Fusion 39 683
Google Scholar
[27] Coomer E, Hartman C W, Morse E, Reisman D 2000 Nucl. Fusion 40 1669
Google Scholar
[28] Hwang D Q, Horton R D, Howard S, Evans R W, Brockington S J 2007 J. Fusion Energy 26 81
Google Scholar
[29] Woodruff S, Hill D N, Stallard B W, Bulmer R, Cohen B, Holcomb C T, Hooper E B, McLean H S, Moller J, Wood R D 2003 Phys. Rev. Lett. 90 095001
Google Scholar
[30] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203
Google Scholar
Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203
Google Scholar
[31] Wang Z, Beinke P D, Barnes C W, Martin M W, Mignardot E, Wurden G A, Hsu S C, Intrator T P, Munson C P 2005 Rev. Sci. Instrum. 76 033501
Google Scholar
[32] Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516
Google Scholar
[33] Woodall D M, Len L K 1985 J. Appl. Phys. 57 961
Google Scholar
[34] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 68 035203
Google Scholar
Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203
Google Scholar
[35] Bellan P M 2000 Spheromak (London: Imperial College Press) p232
[36] Black D C, Mayo R M, Caress R W 1997 Phys. Plasmas 4 2820
Google Scholar
[37] Goldenbaum G C, Irby J H, Chong Y P, Hart G W 1980 Phys. Rev. Lett. 44 393
Google Scholar
[38] Yamada M, Furth H P, Hsu W, Janos A, Jardin S, Okabayashi M, Sinnis J, Stix T H, Yamazaki K 1981 Phys. Rev. Lett. 46 188
Google Scholar
[39] Chung Kyoung-Jae, Chung K S, Hwang Y S 2014 Curr. Appl. Phys. 14 287
Google Scholar
[40] 陈磊, 杨林, 万翔, 金大志, 向伟, 谈效华 2015 强激光与粒子束 27 045007
Google Scholar
Chen L, Yang L, Wan X, Jin D Z, Xiang W, Tan X H 2015 High Pow. Las. Part. Beam. 27 045007
Google Scholar
[41] Chen S L, Sekiguchi T 1965 J. Appl. Phys. 36 2363
Google Scholar
[42] Kumar D, Moser A L, Bellan P M 2010 IEEE Trans. Plasma Sci. 38 47
Google Scholar
[43] Fernández J C, Barnes C W, Jarboe T R, Henins I, Hoida H W, Klingner P L, Knox S O, Marklin G J, Wright B L 1988 Nucl. Fusion 28 1555
Google Scholar
[44] Mayo R M, Choi C K, Levinton F M, Janos A C, Yamada M 1990 Phys. Fluids B 2 115
Google Scholar
-
-
[1] Rosenbluth M N, Bussac M N 1979 Nucl. Fusion 19 489
Google Scholar
[2] Raman R, Martin F, Quirion B, St-Onge M, Lachambre J L, Michaud D, Sawatzky B, Thomas J, Hirose A, Hwang D, Richard N, Côté C, Abel G, Pinsonneault D, Gauvreau J L, Stansfield B, Décoste R, Côté A, Zuzak W, Boucher C 1994 Phys. Rev. Lett. 73 3101
Google Scholar
[3] Fukumoto N, Inoo Y, Nomura M, Nagata M, Uyama T, Ogawa H, Kimura H, Uehara U, Shibata T, Kashiwa Y, Suzuki S, Kasai S, Group J M 2004 Nucl. Fusion 44 982
Google Scholar
[4] Liu D, Xiao C, Hirose A 2008 Rev. Sci. Instrum. 79 013502
Google Scholar
[5] Brown M, Gelber K, Mebratu M 2020 Plasma 3 27
Google Scholar
[6] Yamada M, Ono Y, Hayakawa A, Katsurai M, Perkins F W 1990 Phys. Rev. Lett. 65 721
Google Scholar
[7] Chai K-B, Zhai X, Bellan P M 2016 Phys. Plasmas 23 032122
Google Scholar
[8] Howard S, Laberge M, McIlwraith L, Richardson D, Gregson J 2009 J. Fusion Energy 28 156
Google Scholar
[9] Degnan J H, Peterkin R E, Baca G P, Beason J D, Bell D E, Dearborn M E, Dietz D, Douglas M R, Englert S E, Englert T J, Hackett K E, Holmes J H, Hussey T W, Kiuttu G F, Lehr F M, Marklin G J, Mullins B W, Price D W, Roderick N F, Ruden E L, Sovinec C R, Turchi P J, Bird G, Coffey S K, Seiler S W, Chen Y G, Gale D, Graham J D, Scott M, Sommars W 1993 Phys. Fluids B 5 2938
Google Scholar
[10] Dietz D, Hussey T W, Roderick N F, Douglas M R, Degnan J H 1997 Phys. Plasmas 4 873
Google Scholar
[11] Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232
Google Scholar
[12] Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233
Google Scholar
[13] Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709
Google Scholar
[14] Hsu S C, Bellan P M 2005 Phys. Plasmas 12 032103
Google Scholar
[15] Turner W C, Goldenbaum G C, Granneman E H A, Hammer J H, Hartman C W, Prono D S, Taska J 1983 Phys. Fluids 26 1965
Google Scholar
[16] Barnes C W, Jarboe T R, Henins I, Sherwood A R, Knox S O, Gribble R, Hoida H W, Klingner P L, Lilliequist C G, Linford R K, Platts D A, Spencer R L, Tuszewski M 1984 Nucl. Fusion 24 267
Google Scholar
[17] Taylor J B 1986 Rev. Mod. Phys. 58 741
Google Scholar
[18] Barnes C W, Fernández J C, Henins I, Hoida H W, Jarboe T R, Knox S O, Marklin G J, McKenna K F 1986 Phys. Fluids 29 3415
Google Scholar
[19] Jarboe T R 1994 Plasma Phys. Controlled Fusion 36 945
Google Scholar
[20] Hsu S C, Bellan P M 2003 Phys. Rev. Lett. 90 215002
Google Scholar
[21] Baker K L, Hwang D Q, Evans R W, Horton R D, McLean H S, Terry S D, Howard S, DiCaprio C J 2002 Nucl. Fusion 42 94
Google Scholar
[22] Edo T, Asai T, Tanaka F, Yamada S, Hosozawa A, Kaminou Y, Gota H, Roche T, Allfrey I, Osin D, Smith R, Binderbauer M, Matsumoto T, Tajima T 2018 Plasma Fusion Res. 13 3405062
Google Scholar
[23] Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512
Google Scholar
[24] Brown M R, Bailey Ⅲ A D, Bellan P M 1991 J. Appl. Phys. 69 6302
Google Scholar
[25] Kaur M, Gelber K D, Light A D, Brown M R 2018 Plasma 1 229
Google Scholar
[26] Rusbridge M G, Gee S J, Browning P K, Cunningham G, Duck R C, al-Karkhy A, Martin R, Bradley J W 1997 Plasma Phys. Controlled Fusion 39 683
Google Scholar
[27] Coomer E, Hartman C W, Morse E, Reisman D 2000 Nucl. Fusion 40 1669
Google Scholar
[28] Hwang D Q, Horton R D, Howard S, Evans R W, Brockington S J 2007 J. Fusion Energy 26 81
Google Scholar
[29] Woodruff S, Hill D N, Stallard B W, Bulmer R, Cohen B, Holcomb C T, Hooper E B, McLean H S, Moller J, Wood R D 2003 Phys. Rev. Lett. 90 095001
Google Scholar
[30] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203
Google Scholar
Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203
Google Scholar
[31] Wang Z, Beinke P D, Barnes C W, Martin M W, Mignardot E, Wurden G A, Hsu S C, Intrator T P, Munson C P 2005 Rev. Sci. Instrum. 76 033501
Google Scholar
[32] Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516
Google Scholar
[33] Woodall D M, Len L K 1985 J. Appl. Phys. 57 961
Google Scholar
[34] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 68 035203
Google Scholar
Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203
Google Scholar
[35] Bellan P M 2000 Spheromak (London: Imperial College Press) p232
[36] Black D C, Mayo R M, Caress R W 1997 Phys. Plasmas 4 2820
Google Scholar
[37] Goldenbaum G C, Irby J H, Chong Y P, Hart G W 1980 Phys. Rev. Lett. 44 393
Google Scholar
[38] Yamada M, Furth H P, Hsu W, Janos A, Jardin S, Okabayashi M, Sinnis J, Stix T H, Yamazaki K 1981 Phys. Rev. Lett. 46 188
Google Scholar
[39] Chung Kyoung-Jae, Chung K S, Hwang Y S 2014 Curr. Appl. Phys. 14 287
Google Scholar
[40] 陈磊, 杨林, 万翔, 金大志, 向伟, 谈效华 2015 强激光与粒子束 27 045007
Google Scholar
Chen L, Yang L, Wan X, Jin D Z, Xiang W, Tan X H 2015 High Pow. Las. Part. Beam. 27 045007
Google Scholar
[41] Chen S L, Sekiguchi T 1965 J. Appl. Phys. 36 2363
Google Scholar
[42] Kumar D, Moser A L, Bellan P M 2010 IEEE Trans. Plasma Sci. 38 47
Google Scholar
[43] Fernández J C, Barnes C W, Jarboe T R, Henins I, Hoida H W, Klingner P L, Knox S O, Marklin G J, Wright B L 1988 Nucl. Fusion 28 1555
Google Scholar
[44] Mayo R M, Choi C K, Levinton F M, Janos A C, Yamada M 1990 Phys. Fluids B 2 115
Google Scholar
计量
- 文章访问数: 6745
- PDF下载量: 82
- 被引次数: 0