搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁化同轴枪操作参数对球马克产生及等离子体特性的影响

赵繁涛 宋健 张津硕 漆亮文 赵崇霄 王德真

引用本文:
Citation:

磁化同轴枪操作参数对球马克产生及等离子体特性的影响

赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真

Effects of magnetized coaxial plasma gun operation on spheromak formation and plasma characteristics

Zhao Fan-Tao, Song Jian, Zhang Jin-Shuo, Qi Liang-Wen, Zhao Chong-Xiao, Wang De-Zhen
PDF
HTML
导出引用
  • 磁化同轴枪放电装置可以产生高传输速度、高电子密度的球马克, 在可控核聚变、高能量密度物理以及天体物理等领域均得到了广泛关注. 基于球马克形成阈值理论, 通过对放电图像的拍摄以及光、电、磁信号的诊断分析, 本文主要研究了磁化同轴枪操作参数对球马克产生及等离子体特性的影响. 实验结果发现: 除放电电流和偏置磁通的比值以外, 受送气时长控制的气体分布长度同样是球马克产生的关键. 电极间通道内较长的气体分布可以使放电产生集中承载电流的等离子体环, 该环能够在足够强的磁压力推动下完成磁场拉伸与重联以形成球马克. 增加放电电流可以同时带来球马克传输速度、电子温度以及密度的提升, 而增加送气量仅对电子密度提升具有正面影响, 球马克性能优化的关键在于提升电容器组向等离子体环的能量馈入.
    Spheromak plasma formed by a magnetized coaxial plasma gun possesses high propagation velocity and electron density, which has been extensively investigated, for it has a variety of applications, such as fueling of fusion reactor, magnetized target fusion, and labratory simulations of astrophysical phenomena. Formation and optimization of the gun-type spheromak are studied by investigating the discharge characteristics of the gun and the scaling of plasma parameters with various operation conditions. Based on the spheromak formation mechanism, several significant operation parameters are identified, including peak value of gun current, bias flux, gas-puffed mass and the length of neutral gas distribution inside the gun channel: this length can be controlled by adjusting the time delay between gas injection and discharge of the capacitor bank to initiate gas breakdown and for a long time delay the current path distribution inside the gun channel can be characterized by a moving plasma ring which carries almost all of the gun current. Under a sufficient pressure of the self-generated field, the moving plasma ring with freezed toroidal field pushes the bias field into the vacuum chamber, the twisted field lines are then broken, reconnected, and thus forming a free spheromak. The injected gas is desired to exist only in the gun channel: if downstream region of the gun is filled with neutral gas, a weakly ionized and cold spheromak will be formed, which is not beneficial to practical applications. The multiple current path phenomenon is observed using two spatially separated magnetic coils inside the gun channel, excepting for the plasma ring, there are a stagnant current path and a reversed current path separately located in upstream and middle region of the gun channel. Development of the upstream current path is due to the residual charged particles deteached from the tail of accelerated plasma ring and the unswept netural particles, which reduces the energy injected into the plasma ring from capacitor bank, and thus having a negative effect on the performance of spheormak. The axial propagation velocity of spheromak, electron temperature and density are shown to increase with the capacitor bank voltage rising, which can be attributed to the elevation in energy injected into the plasma ring. Only higher electron density is obatined by increasing the gas-puffed mass, and the propagation velocity and electron temperature are observed to decrease. The energy injected into the plasma ring is independent of the gas-puffed mass, and electron density is elevated with gas-puffed mass increasing. Since the frequency of electron impact ionization increases, electrons undergo more collisions and transfer more energy to other particle species, thus the thermal energy of electrons decreases.
      通信作者: 宋健, songjian@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51807020)、国家重点研发计划(批准号: 2017YFE0301804, 2017YFE0301206)和中央高校基本科研业务费(批准号: DUT20RC(4)008)资助的课题
      Corresponding author: Song Jian, songjian@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51807020), the National Key R&D Program of China (Grant Nos. 2017YFE0301804, 2017YFE0301206), and the Fundamental Research Funds for the Central University of the Ministry of Education of China (Grant No. DUT20RC(4)008)
    [1]

    Rosenbluth M N, Bussac M N 1979 Nucl. Fusion 19 489Google Scholar

    [2]

    Raman R, Martin F, Quirion B, St-Onge M, Lachambre J L, Michaud D, Sawatzky B, Thomas J, Hirose A, Hwang D, Richard N, Côté C, Abel G, Pinsonneault D, Gauvreau J L, Stansfield B, Décoste R, Côté A, Zuzak W, Boucher C 1994 Phys. Rev. Lett. 73 3101Google Scholar

    [3]

    Fukumoto N, Inoo Y, Nomura M, Nagata M, Uyama T, Ogawa H, Kimura H, Uehara U, Shibata T, Kashiwa Y, Suzuki S, Kasai S, Group J M 2004 Nucl. Fusion 44 982Google Scholar

    [4]

    Liu D, Xiao C, Hirose A 2008 Rev. Sci. Instrum. 79 013502Google Scholar

    [5]

    Brown M, Gelber K, Mebratu M 2020 Plasma 3 27Google Scholar

    [6]

    Yamada M, Ono Y, Hayakawa A, Katsurai M, Perkins F W 1990 Phys. Rev. Lett. 65 721Google Scholar

    [7]

    Chai K-B, Zhai X, Bellan P M 2016 Phys. Plasmas 23 032122Google Scholar

    [8]

    Howard S, Laberge M, McIlwraith L, Richardson D, Gregson J 2009 J. Fusion Energy 28 156Google Scholar

    [9]

    Degnan J H, Peterkin R E, Baca G P, Beason J D, Bell D E, Dearborn M E, Dietz D, Douglas M R, Englert S E, Englert T J, Hackett K E, Holmes J H, Hussey T W, Kiuttu G F, Lehr F M, Marklin G J, Mullins B W, Price D W, Roderick N F, Ruden E L, Sovinec C R, Turchi P J, Bird G, Coffey S K, Seiler S W, Chen Y G, Gale D, Graham J D, Scott M, Sommars W 1993 Phys. Fluids B 5 2938Google Scholar

    [10]

    Dietz D, Hussey T W, Roderick N F, Douglas M R, Degnan J H 1997 Phys. Plasmas 4 873Google Scholar

    [11]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [12]

    Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233Google Scholar

    [13]

    Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709Google Scholar

    [14]

    Hsu S C, Bellan P M 2005 Phys. Plasmas 12 032103Google Scholar

    [15]

    Turner W C, Goldenbaum G C, Granneman E H A, Hammer J H, Hartman C W, Prono D S, Taska J 1983 Phys. Fluids 26 1965Google Scholar

    [16]

    Barnes C W, Jarboe T R, Henins I, Sherwood A R, Knox S O, Gribble R, Hoida H W, Klingner P L, Lilliequist C G, Linford R K, Platts D A, Spencer R L, Tuszewski M 1984 Nucl. Fusion 24 267Google Scholar

    [17]

    Taylor J B 1986 Rev. Mod. Phys. 58 741Google Scholar

    [18]

    Barnes C W, Fernández J C, Henins I, Hoida H W, Jarboe T R, Knox S O, Marklin G J, McKenna K F 1986 Phys. Fluids 29 3415Google Scholar

    [19]

    Jarboe T R 1994 Plasma Phys. Controlled Fusion 36 945Google Scholar

    [20]

    Hsu S C, Bellan P M 2003 Phys. Rev. Lett. 90 215002Google Scholar

    [21]

    Baker K L, Hwang D Q, Evans R W, Horton R D, McLean H S, Terry S D, Howard S, DiCaprio C J 2002 Nucl. Fusion 42 94Google Scholar

    [22]

    Edo T, Asai T, Tanaka F, Yamada S, Hosozawa A, Kaminou Y, Gota H, Roche T, Allfrey I, Osin D, Smith R, Binderbauer M, Matsumoto T, Tajima T 2018 Plasma Fusion Res. 13 3405062Google Scholar

    [23]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar

    [24]

    Brown M R, Bailey Ⅲ A D, Bellan P M 1991 J. Appl. Phys. 69 6302Google Scholar

    [25]

    Kaur M, Gelber K D, Light A D, Brown M R 2018 Plasma 1 229Google Scholar

    [26]

    Rusbridge M G, Gee S J, Browning P K, Cunningham G, Duck R C, al-Karkhy A, Martin R, Bradley J W 1997 Plasma Phys. Controlled Fusion 39 683Google Scholar

    [27]

    Coomer E, Hartman C W, Morse E, Reisman D 2000 Nucl. Fusion 40 1669Google Scholar

    [28]

    Hwang D Q, Horton R D, Howard S, Evans R W, Brockington S J 2007 J. Fusion Energy 26 81Google Scholar

    [29]

    Woodruff S, Hill D N, Stallard B W, Bulmer R, Cohen B, Holcomb C T, Hooper E B, McLean H S, Moller J, Wood R D 2003 Phys. Rev. Lett. 90 095001Google Scholar

    [30]

    赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203Google Scholar

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [31]

    Wang Z, Beinke P D, Barnes C W, Martin M W, Mignardot E, Wurden G A, Hsu S C, Intrator T P, Munson C P 2005 Rev. Sci. Instrum. 76 033501Google Scholar

    [32]

    Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

    [33]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [34]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 68 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar

    [35]

    Bellan P M 2000 Spheromak (London: Imperial College Press) p232

    [36]

    Black D C, Mayo R M, Caress R W 1997 Phys. Plasmas 4 2820Google Scholar

    [37]

    Goldenbaum G C, Irby J H, Chong Y P, Hart G W 1980 Phys. Rev. Lett. 44 393Google Scholar

    [38]

    Yamada M, Furth H P, Hsu W, Janos A, Jardin S, Okabayashi M, Sinnis J, Stix T H, Yamazaki K 1981 Phys. Rev. Lett. 46 188Google Scholar

    [39]

    Chung Kyoung-Jae, Chung K S, Hwang Y S 2014 Curr. Appl. Phys. 14 287Google Scholar

    [40]

    陈磊, 杨林, 万翔, 金大志, 向伟, 谈效华 2015 强激光与粒子束 27 045007Google Scholar

    Chen L, Yang L, Wan X, Jin D Z, Xiang W, Tan X H 2015 High Pow. Las. Part. Beam. 27 045007Google Scholar

    [41]

    Chen S L, Sekiguchi T 1965 J. Appl. Phys. 36 2363Google Scholar

    [42]

    Kumar D, Moser A L, Bellan P M 2010 IEEE Trans. Plasma Sci. 38 47Google Scholar

    [43]

    Fernández J C, Barnes C W, Jarboe T R, Henins I, Hoida H W, Klingner P L, Knox S O, Marklin G J, Wright B L 1988 Nucl. Fusion 28 1555Google Scholar

    [44]

    Mayo R M, Choi C K, Levinton F M, Janos A C, Yamada M 1990 Phys. Fluids B 2 115Google Scholar

  • 图 1  球马克形成过程示意图

    Fig. 1.  Schematic diagram of spheromak formation sequences.

    图 2  实验装置示意图

    Fig. 2.  Schematic of experimental setup.

    图 3  磁化同轴枪放电电流、电压与以及光电二极管信号波形图

    Fig. 3.  Representative gun current, voltage and photodiodes traces.

    图 4  球马克环向与轴向磁场的径向分布 (1 G = 10–4 T)

    Fig. 4.  Radial profiles of toroidal and axial magnetic field in spheromak (1 G = 10–4 T).

    图 5  电极间通道内的环向磁场波形

    Fig. 5.  Toroidal magnetic field traces inside the gun channel

    图 6  磁化同轴枪内部放电图像

    Fig. 6.  Image sequences of discharge inside the gun channel.

    图 7  球马克传输速度与充电电压、送气量的关系

    Fig. 7.  Spheromak propagation speed versus capacitor-bank charge voltage and gas-puffed mass.

    图 8  电子密度与充电电压、送气量的关系

    Fig. 8.  Electron density versus capacitor-bank charge voltage and gas-puffed mass.

    图 9  注入能量与充电电压、送气量的关系

    Fig. 9.  Injected energy versus capacitor-bank charge voltage and gas-puffed mass.

    图 10  电子温度与充电电压、送气量的关系

    Fig. 10.  Electron temperature versus capacitor-bank charge voltage and gas-puffed mass.

    Baidu
  • [1]

    Rosenbluth M N, Bussac M N 1979 Nucl. Fusion 19 489Google Scholar

    [2]

    Raman R, Martin F, Quirion B, St-Onge M, Lachambre J L, Michaud D, Sawatzky B, Thomas J, Hirose A, Hwang D, Richard N, Côté C, Abel G, Pinsonneault D, Gauvreau J L, Stansfield B, Décoste R, Côté A, Zuzak W, Boucher C 1994 Phys. Rev. Lett. 73 3101Google Scholar

    [3]

    Fukumoto N, Inoo Y, Nomura M, Nagata M, Uyama T, Ogawa H, Kimura H, Uehara U, Shibata T, Kashiwa Y, Suzuki S, Kasai S, Group J M 2004 Nucl. Fusion 44 982Google Scholar

    [4]

    Liu D, Xiao C, Hirose A 2008 Rev. Sci. Instrum. 79 013502Google Scholar

    [5]

    Brown M, Gelber K, Mebratu M 2020 Plasma 3 27Google Scholar

    [6]

    Yamada M, Ono Y, Hayakawa A, Katsurai M, Perkins F W 1990 Phys. Rev. Lett. 65 721Google Scholar

    [7]

    Chai K-B, Zhai X, Bellan P M 2016 Phys. Plasmas 23 032122Google Scholar

    [8]

    Howard S, Laberge M, McIlwraith L, Richardson D, Gregson J 2009 J. Fusion Energy 28 156Google Scholar

    [9]

    Degnan J H, Peterkin R E, Baca G P, Beason J D, Bell D E, Dearborn M E, Dietz D, Douglas M R, Englert S E, Englert T J, Hackett K E, Holmes J H, Hussey T W, Kiuttu G F, Lehr F M, Marklin G J, Mullins B W, Price D W, Roderick N F, Ruden E L, Sovinec C R, Turchi P J, Bird G, Coffey S K, Seiler S W, Chen Y G, Gale D, Graham J D, Scott M, Sommars W 1993 Phys. Fluids B 5 2938Google Scholar

    [10]

    Dietz D, Hussey T W, Roderick N F, Douglas M R, Degnan J H 1997 Phys. Plasmas 4 873Google Scholar

    [11]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [12]

    Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233Google Scholar

    [13]

    Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709Google Scholar

    [14]

    Hsu S C, Bellan P M 2005 Phys. Plasmas 12 032103Google Scholar

    [15]

    Turner W C, Goldenbaum G C, Granneman E H A, Hammer J H, Hartman C W, Prono D S, Taska J 1983 Phys. Fluids 26 1965Google Scholar

    [16]

    Barnes C W, Jarboe T R, Henins I, Sherwood A R, Knox S O, Gribble R, Hoida H W, Klingner P L, Lilliequist C G, Linford R K, Platts D A, Spencer R L, Tuszewski M 1984 Nucl. Fusion 24 267Google Scholar

    [17]

    Taylor J B 1986 Rev. Mod. Phys. 58 741Google Scholar

    [18]

    Barnes C W, Fernández J C, Henins I, Hoida H W, Jarboe T R, Knox S O, Marklin G J, McKenna K F 1986 Phys. Fluids 29 3415Google Scholar

    [19]

    Jarboe T R 1994 Plasma Phys. Controlled Fusion 36 945Google Scholar

    [20]

    Hsu S C, Bellan P M 2003 Phys. Rev. Lett. 90 215002Google Scholar

    [21]

    Baker K L, Hwang D Q, Evans R W, Horton R D, McLean H S, Terry S D, Howard S, DiCaprio C J 2002 Nucl. Fusion 42 94Google Scholar

    [22]

    Edo T, Asai T, Tanaka F, Yamada S, Hosozawa A, Kaminou Y, Gota H, Roche T, Allfrey I, Osin D, Smith R, Binderbauer M, Matsumoto T, Tajima T 2018 Plasma Fusion Res. 13 3405062Google Scholar

    [23]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar

    [24]

    Brown M R, Bailey Ⅲ A D, Bellan P M 1991 J. Appl. Phys. 69 6302Google Scholar

    [25]

    Kaur M, Gelber K D, Light A D, Brown M R 2018 Plasma 1 229Google Scholar

    [26]

    Rusbridge M G, Gee S J, Browning P K, Cunningham G, Duck R C, al-Karkhy A, Martin R, Bradley J W 1997 Plasma Phys. Controlled Fusion 39 683Google Scholar

    [27]

    Coomer E, Hartman C W, Morse E, Reisman D 2000 Nucl. Fusion 40 1669Google Scholar

    [28]

    Hwang D Q, Horton R D, Howard S, Evans R W, Brockington S J 2007 J. Fusion Energy 26 81Google Scholar

    [29]

    Woodruff S, Hill D N, Stallard B W, Bulmer R, Cohen B, Holcomb C T, Hooper E B, McLean H S, Moller J, Wood R D 2003 Phys. Rev. Lett. 90 095001Google Scholar

    [30]

    赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203Google Scholar

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [31]

    Wang Z, Beinke P D, Barnes C W, Martin M W, Mignardot E, Wurden G A, Hsu S C, Intrator T P, Munson C P 2005 Rev. Sci. Instrum. 76 033501Google Scholar

    [32]

    Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

    [33]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [34]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 68 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar

    [35]

    Bellan P M 2000 Spheromak (London: Imperial College Press) p232

    [36]

    Black D C, Mayo R M, Caress R W 1997 Phys. Plasmas 4 2820Google Scholar

    [37]

    Goldenbaum G C, Irby J H, Chong Y P, Hart G W 1980 Phys. Rev. Lett. 44 393Google Scholar

    [38]

    Yamada M, Furth H P, Hsu W, Janos A, Jardin S, Okabayashi M, Sinnis J, Stix T H, Yamazaki K 1981 Phys. Rev. Lett. 46 188Google Scholar

    [39]

    Chung Kyoung-Jae, Chung K S, Hwang Y S 2014 Curr. Appl. Phys. 14 287Google Scholar

    [40]

    陈磊, 杨林, 万翔, 金大志, 向伟, 谈效华 2015 强激光与粒子束 27 045007Google Scholar

    Chen L, Yang L, Wan X, Jin D Z, Xiang W, Tan X H 2015 High Pow. Las. Part. Beam. 27 045007Google Scholar

    [41]

    Chen S L, Sekiguchi T 1965 J. Appl. Phys. 36 2363Google Scholar

    [42]

    Kumar D, Moser A L, Bellan P M 2010 IEEE Trans. Plasma Sci. 38 47Google Scholar

    [43]

    Fernández J C, Barnes C W, Jarboe T R, Henins I, Hoida H W, Klingner P L, Knox S O, Marklin G J, Wright B L 1988 Nucl. Fusion 28 1555Google Scholar

    [44]

    Mayo R M, Choi C K, Levinton F M, Janos A C, Yamada M 1990 Phys. Fluids B 2 115Google Scholar

  • [1] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用.  , 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性.  , 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [3] 赵新丽, 马国亮, 马余刚. 中高能重离子碰撞中的电磁场效应和手征反常现象.  , 2023, 72(11): 112502. doi: 10.7498/aps.72.20230245
    [4] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响.  , 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [5] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生. 同轴枪放电等离子体电流片的运动特性研究.  , 2019, 68(3): 035203. doi: 10.7498/aps.68.20181832
    [6] 李文秋, 王刚, 苏小保. 非磁化冷等离子体柱中的模式辐射特性分析.  , 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [7] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 碰撞参数对磁化电负性等离子体鞘层结构的影响.  , 2016, 65(24): 245201. doi: 10.7498/aps.65.245201
    [8] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究.  , 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [9] 唐田田, 张朝民, 张敏. 氢负离子在磁场和金属面附近电子通量分布的研究.  , 2013, 62(12): 123201. doi: 10.7498/aps.62.123201
    [10] 邱明辉, 刘惠平, 邹秀. 斜磁场作用下碰撞电负性等离子体鞘层的玻姆判据.  , 2012, 61(15): 155204. doi: 10.7498/aps.61.155204
    [11] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究.  , 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [12] 唐田田, 王德华, 黄凯云, 王姗姗. 氢负离子在磁场和电介质表面附近光剥离的研究.  , 2012, 61(6): 063202. doi: 10.7498/aps.61.063202
    [13] 章海锋, 刘少斌, 孔祥鲲. 横磁模式下二维非磁化等离子体光子晶体的线缺陷特性研究.  , 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [14] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [15] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据.  , 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [16] 邹秀, 邹滨雁, 刘惠平. 外加磁场对碰撞射频鞘层离子能量分布的影响.  , 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [17] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构.  , 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [18] 谢鸿全, 刘濮鲲. 磁化等离子体填充螺旋线的色散方程.  , 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [19] 邹 秀. 斜磁场作用下的射频等离子体平板鞘层结构.  , 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [20] 邹 秀, 刘金远, 王正汹, 宫 野, 刘 悦, 王晓钢. 磁场中等离子体鞘层的结构.  , 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
计量
  • 文章访问数:  5840
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 修回日期:  2021-05-26
  • 上网日期:  2021-09-29
  • 刊出日期:  2021-10-20

/

返回文章
返回
Baidu
map