-
Organic solar cells (OSCs) have attracted intensive attention in recent years due to their distinct advantages of rich material resources, easy fabrication, and good flexibility. The standard structure of OSCs consists of an anode, an active layer and a cathode. Indium tin oxide (ITO) is often used as a transparent anode. However, the indium in ITO is not only very low in content, but also can penetrate into other layers of OSCs and affect the battery life. The ITO is not suitable for flexible OSCs because of its brittleness. Therefore, researchers have been trying to find alternatives to ITO, which should have transparent and flexible electrodes. The multilayer film consisting of MoO3/Ag/MoO3 is a very promising candidate as an alternative of ITO to work as the transparent anode in OSCs. However, in MoO3/Ag/MoO3 based thin OSCs structure, the absorption of light is quite poor. Here, we introduce a short-pitch metallic grating in which there are used the surface plasmon polaritons (SPPs) to enhance the light absorption of the active layer. The finite-difference frequency-domain method is used to solve the Maxwell's equations and semiconductor equations for revealing the optical and electrical properties of OSCs. As is well known, the contradiction between the long light absorption path and the short exciton diffusion length results in a relatively low power conversion efficiency (PCE) of the OSCs. Metallic gratings can be introduced into conventional OSCs for improving the light absorption due to the surface plasmon resonance. The light absorption can be enhanced compared with that in the conventional OSCs without metallic gratings. At the same time, the small periodic structure is introduced into the MoO3/Ag/MoO3 anode-based OSCs. The small spacing between gratings creates a strong interaction between two adjacent metal nanowalls. These nanostructures and metal nanostructures will further enhance the light absorption. In this work, it is proposed that short-pitch metallic gratings be introduced into the MoO3/Ag/MoO3 anode-based OSCs for improving the light absorption and PCE. It is found that the light absorption of plasmonic structure with short-pitch metallic gratings can be greatly enhanced compared with standard structure without metallic gratings. Meanwhile, with an optimal groove width of 4 nm, PCE is improved by 49% compared with the case with the planar structure. These results contribute to better developing the ITO free OSCs.
-
Keywords:
- organic solar cells /
- plasmonic /
- short-pitch metallic grating
[1] Duan C, Zhong C, Liu C, Huang F, Cao Y 2012 Chem. Mater. 24 1682
[2] Li G, Zhu R, Yang Y 2012 Nature Photon. 6 153
[3] In S, Mason D R, Lee H, Jung M, Lee C, Park N 2014 ACS Photon. 2 78
[4] Kumar A, Zhou C 2010 ACS Nano 4 11
[5] Ingans O 2011 Nature Photon. 5 201
[6] Wang Y, He B, Wang H, Xu J, Ta T, Li W, Wang Q, Yang S, Tang Y, Zou B 2017 Mater. Lett. 188 107
[7] Cho J M, Lee S K, Moon S J, Jo J, Shin W S 2014 Current Appl. Phys. 14 1144
[8] Wu J, Agrawal M, Becerril H A, Bao Z, Liu Z, Chen Y, Peumans P 2009 ACS Nano 4 43
[9] Zhang Y, Cui Y, Ji T, Hao Y, Zhu F 2017 IEEE Photon. J. 9 1
[10] Atwater H A, Polman A 2010 Nature Mater. 9 205
[11] Zhang Y, Cui Y, Wang W, Fung K H, Ji T, Hao Y, Zhu F 2015 Plasmonics 10 773
[12] Huang Z X, Cheng L L, Wu B, Wu X L 2016 IEEE Photon. Technol. Lett. 28 2047
[13] Barth J, Johnson R, Cardona M, Palik E 1991 Handbook of Optical Constants of Solids (New York:Academic Press) pp313-334
[14] Boland P, Lee K, Dean J, Namkoong G 2010 Solar Energy Materials and Solar Cells 94 2170
[15] Nam Y M, Huh J, Jo W H 2011 Solar Energy Materials and Solar Cells 95 1095
[16] Berenger J P 1994 J. Computat. Phys. 114 185
[17] Chen X W, Choy W C, Liang C, Wai P, He S 2007 Appl. Phys. Lett. 91 221112
[18] Chew W, Jin J, Michielssen E 1997 Microw. Opt. Technol. Lett. 15 363
[19] Wei E, Choy W C, Chew W C 2010 Opt. Express 18 5993
[20] Huang Z X, Cheng L L, Wu X L 2016 IEEE Photon. J. 8 4
[21] Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101 (in Chinese)[周丽, 魏源, 黄志祥, 吴先良 2015 64 018101]
[22] Wei E, Choy W C, Wu Y, Chew W C 2012 Opt. Express 20 2572
[23] Koster L J, Smits E, Mihailetchi V, Blom P 2005 Phys. Rev. B 72 085205
[24] Sievers D W, Shrotriya V, Yang Y 2006 J. Appl. Phys. 100 114509
[25] Wang J Y, Tsai F J, Huang J J, Chen C Y, Li N, Kiang Y W, Yang C 2010 Opt. Express 18 2682
[26] Li X, Hylton N P, Giannini V, Lee K H, Ekins-Daukes N J, Maier S A 2011 Opt. Express 19 A888
-
[1] Duan C, Zhong C, Liu C, Huang F, Cao Y 2012 Chem. Mater. 24 1682
[2] Li G, Zhu R, Yang Y 2012 Nature Photon. 6 153
[3] In S, Mason D R, Lee H, Jung M, Lee C, Park N 2014 ACS Photon. 2 78
[4] Kumar A, Zhou C 2010 ACS Nano 4 11
[5] Ingans O 2011 Nature Photon. 5 201
[6] Wang Y, He B, Wang H, Xu J, Ta T, Li W, Wang Q, Yang S, Tang Y, Zou B 2017 Mater. Lett. 188 107
[7] Cho J M, Lee S K, Moon S J, Jo J, Shin W S 2014 Current Appl. Phys. 14 1144
[8] Wu J, Agrawal M, Becerril H A, Bao Z, Liu Z, Chen Y, Peumans P 2009 ACS Nano 4 43
[9] Zhang Y, Cui Y, Ji T, Hao Y, Zhu F 2017 IEEE Photon. J. 9 1
[10] Atwater H A, Polman A 2010 Nature Mater. 9 205
[11] Zhang Y, Cui Y, Wang W, Fung K H, Ji T, Hao Y, Zhu F 2015 Plasmonics 10 773
[12] Huang Z X, Cheng L L, Wu B, Wu X L 2016 IEEE Photon. Technol. Lett. 28 2047
[13] Barth J, Johnson R, Cardona M, Palik E 1991 Handbook of Optical Constants of Solids (New York:Academic Press) pp313-334
[14] Boland P, Lee K, Dean J, Namkoong G 2010 Solar Energy Materials and Solar Cells 94 2170
[15] Nam Y M, Huh J, Jo W H 2011 Solar Energy Materials and Solar Cells 95 1095
[16] Berenger J P 1994 J. Computat. Phys. 114 185
[17] Chen X W, Choy W C, Liang C, Wai P, He S 2007 Appl. Phys. Lett. 91 221112
[18] Chew W, Jin J, Michielssen E 1997 Microw. Opt. Technol. Lett. 15 363
[19] Wei E, Choy W C, Chew W C 2010 Opt. Express 18 5993
[20] Huang Z X, Cheng L L, Wu X L 2016 IEEE Photon. J. 8 4
[21] Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101 (in Chinese)[周丽, 魏源, 黄志祥, 吴先良 2015 64 018101]
[22] Wei E, Choy W C, Wu Y, Chew W C 2012 Opt. Express 20 2572
[23] Koster L J, Smits E, Mihailetchi V, Blom P 2005 Phys. Rev. B 72 085205
[24] Sievers D W, Shrotriya V, Yang Y 2006 J. Appl. Phys. 100 114509
[25] Wang J Y, Tsai F J, Huang J J, Chen C Y, Li N, Kiang Y W, Yang C 2010 Opt. Express 18 2682
[26] Li X, Hylton N P, Giannini V, Lee K H, Ekins-Daukes N J, Maier S A 2011 Opt. Express 19 A888
Catalog
Metrics
- Abstract views: 6154
- PDF Downloads: 97
- Cited By: 0