Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of microcavity-antireflection resonance hybrid modes enhanced absorption of organic solar cells

Zhao Ze-Yu Liu Jin-Qiao Li Ai-Wu Niu Li-Gang Xu Ying

Citation:

Theoretical study of microcavity-antireflection resonance hybrid modes enhanced absorption of organic solar cells

Zhao Ze-Yu, Liu Jin-Qiao, Li Ai-Wu, Niu Li-Gang, Xu Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Organic solar cells based on small molecules and conjugated polymers are attracting much attention due to their merits of low costs, simple fabrication processes, light weights, and mechanical flexibilities. Metals are usually considered as promising candidates for the semi-transparent electrodes. In such devices, a strong microcavity resonance can be supported between the two electrodes, resulting in a narrowed bandwidth of light absorption, which, unfortunately, will lower the performances of organic solar cells since broadband absorption is always highly desired. To overcome this obstacle, people have proposed many designs such as using ultra-thin electrodes or using dielectric-metal hybrid electrodes. Although the light absorption bandwidth can be improved considerably, the absorption efficiency would be lowered due to the weakened microcavity resonance. This is a tough problem that always bothers both researchers and engineers. To solve this problem, we propose a light trapping scheme based on broadband hybrid modes due to the hybridization between microcavity resonance and antireflection resonance. By introducing a capping layer outside the device structure, antireflection resonance can be excited inside the capping layer and can then couple with the intrinsic microcavity resonance, inducing dual microcavity-antireflection resonance hybrid modes. The hybrid modes are of broadband and their resonant wavelengths can be easily designed by tuning the capping layer thickness and cavity length, since the capping layer thickness would affect the antireflection resonance while the cavity length would affect the microcavity resonance. By matching the resonance with the high absorption region of the active layer, the overall absorptivity of the proposed device can be greatly enhanced by~37% compared to the conventional microcavity based device where only one mode, that is, the microcavity resonance can be supported. Moreover, we compare our light trapping scheme with the surface plasmon-polaritons based scheme where surface waves are excited to help improve the light absorption. We find that the overall absorptivity of the proposed device cannot be further improved when we introduce grating structure into the device in order to excite surface plasmon-polaritons. This is mainly because the light absorption based on our hybrid mode scheme is already thorough so that the introduction of grating structure can only improve the light loss dissipated in the metal electrodes due to scatterings and diffractions by the gratings. Therefore, the proposed hybrid mode based scheme can be considered as a simple and effective light trapping scheme for organic solar cells and may find applications in both polymer and small molecular based organic solar cells.
      Corresponding author: Xu Ying, xuying1969@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61378053).
    [1]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [2]

    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [3]

    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [4]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese)[黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿2015 64 038103]

    [5]

    Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese)[李青, 李海强, 赵娟, 黄江, 于军胜2013 62 128803]

    [6]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901

    [7]

    Sefunc M A, Okyay A K, Demir H V 2011 Appl. Phys. Lett. 98 093117

    [8]

    Zhang X L, Song J F, Feng J, Sun H B 2013 Opt. Lett. 38 4382

    [9]

    Williamson A, McClean é, Leipold D, Zerulla D, Runge E 2011 Appl. Phys. Lett. 99 093307

    [10]

    Lin H W, Chiu S W, Lin L Y, Huang Z Y, Chen Y H, Lin F, Wong K T 2012 Adv. Mater. 24 2269

    [11]

    Sergeant N P, Hadipour A, Niesen B, Cheyns D, Heremans P, Peumans P, Rand B P 2012 Adv. Mater. 24 728

    [12]

    Chen K S, Yip H L, Salinas J F, Xu Y X, Chueh C C, Jen A K Y 2014 Adv. Mater. 26 3349

    [13]

    Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20

    [14]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Appl. Phys. Lett. 102 103901

    [15]

    Kats M A, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2012 Appl. Phys. Lett. 101 221101

    [16]

    Zhang X L, Feng J, Song J F, Li X B, Sun H B 2011 Opt. Lett. 36 3915

    [17]

    Taflove A 1998 Advances in Computational Electrodynamics:The Finite-Difference Time-Domain Method (London:Artech House)

    [18]

    Kena-Cohen S, Forrest S R 2010 Nat. Photon. 4 371

    [19]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2014 Appl. Phys. Lett. 105 191117

    [20]

    Zhang X L, Feng J, Han X C, Liu Y F, Chen Q D, Song J F, Sun H B 2015 Optica 2 579

    [21]

    Hao Y W, Wang H Y, Zhang Z Y, Zhang X L, Chen Q D, Sun H B 2013 J. Phys. Chem. C 117 26734

    [22]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2015 IEEE Photon. Technol. Lett. 27 821

    [23]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Org. Electron. 14 1577

    [24]

    Min C, Li J, Veronis G, Lee J Y, Fan S, Peumans P 2010 Appl. Phys. Lett. 96 133302

    [25]

    Jin Y, Feng J, Zhang X L, Xu M, Bi Y G, Chen Q D, Wang H Y, Sun H B 2012 Appl. Phys. Lett. 101 163303

    [26]

    Jin Y, Feng J, Xu M, Zhang X L, Wang L, Chen Q D, Wang H Y, Sun H B 2013 Adv. Opt. Mater. 1 809

    [27]

    Bi Y G, Feng J, Chen Y, Liu Y S, Zhang X L, Li Y F, Xu M, Liu Y F, Han X C, Sun H B 2015 Org. Electron. 27 167

    [28]

    Jin Y, Feng J, Zhang X L, Xu M, Chen Q D, Wu Z J, Sun H B 2015 Appl. Phys. Lett. 106 223303

  • [1]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [2]

    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [3]

    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [4]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese)[黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿2015 64 038103]

    [5]

    Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese)[李青, 李海强, 赵娟, 黄江, 于军胜2013 62 128803]

    [6]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901

    [7]

    Sefunc M A, Okyay A K, Demir H V 2011 Appl. Phys. Lett. 98 093117

    [8]

    Zhang X L, Song J F, Feng J, Sun H B 2013 Opt. Lett. 38 4382

    [9]

    Williamson A, McClean é, Leipold D, Zerulla D, Runge E 2011 Appl. Phys. Lett. 99 093307

    [10]

    Lin H W, Chiu S W, Lin L Y, Huang Z Y, Chen Y H, Lin F, Wong K T 2012 Adv. Mater. 24 2269

    [11]

    Sergeant N P, Hadipour A, Niesen B, Cheyns D, Heremans P, Peumans P, Rand B P 2012 Adv. Mater. 24 728

    [12]

    Chen K S, Yip H L, Salinas J F, Xu Y X, Chueh C C, Jen A K Y 2014 Adv. Mater. 26 3349

    [13]

    Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20

    [14]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Appl. Phys. Lett. 102 103901

    [15]

    Kats M A, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2012 Appl. Phys. Lett. 101 221101

    [16]

    Zhang X L, Feng J, Song J F, Li X B, Sun H B 2011 Opt. Lett. 36 3915

    [17]

    Taflove A 1998 Advances in Computational Electrodynamics:The Finite-Difference Time-Domain Method (London:Artech House)

    [18]

    Kena-Cohen S, Forrest S R 2010 Nat. Photon. 4 371

    [19]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2014 Appl. Phys. Lett. 105 191117

    [20]

    Zhang X L, Feng J, Han X C, Liu Y F, Chen Q D, Song J F, Sun H B 2015 Optica 2 579

    [21]

    Hao Y W, Wang H Y, Zhang Z Y, Zhang X L, Chen Q D, Sun H B 2013 J. Phys. Chem. C 117 26734

    [22]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2015 IEEE Photon. Technol. Lett. 27 821

    [23]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Org. Electron. 14 1577

    [24]

    Min C, Li J, Veronis G, Lee J Y, Fan S, Peumans P 2010 Appl. Phys. Lett. 96 133302

    [25]

    Jin Y, Feng J, Zhang X L, Xu M, Bi Y G, Chen Q D, Wang H Y, Sun H B 2012 Appl. Phys. Lett. 101 163303

    [26]

    Jin Y, Feng J, Xu M, Zhang X L, Wang L, Chen Q D, Wang H Y, Sun H B 2013 Adv. Opt. Mater. 1 809

    [27]

    Bi Y G, Feng J, Chen Y, Liu Y S, Zhang X L, Li Y F, Xu M, Liu Y F, Han X C, Sun H B 2015 Org. Electron. 27 167

    [28]

    Jin Y, Feng J, Zhang X L, Xu M, Chen Q D, Wu Z J, Sun H B 2015 Appl. Phys. Lett. 106 223303

  • [1] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [2] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [3] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [4] Lan Wei-Xia, Gu Jia-Lu, Gao Xiao-Hui, Liao Ying-Jie, Zhong Song-Yi, Zhang Wei-Dong, Peng Yan, Sun Yu, Wei Bin. Research progress of organic solar cells based on photonic crystals. Acta Physica Sinica, 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [5] Wang Meng-Yu, Meng Ling-Jun, Yang Yu, Zhong Hui-Kai, Wu Tao, Liu Bin, Zhang Lei, Fu Yan-Jun, Wang Ke-Yi. Selection of whispering-gallery modes and Fano resonance of prolate microbottle resonators. Acta Physica Sinica, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [6] Zhou Peng-Chao, Zhang Wei-Dong, Gu Jia-Lu, Chen Hui-Min, Hu Teng-Da, Pu Hua-Yan, Lan Wei-Xia, Wei Bin. Dual non-fullerene acceptors based high efficiency ternary organic solar cells. Acta Physica Sinica, 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [7] Li Xue,  Wang Liang,  Xiong Jian-Qiao,  Shao Qiu-Ping,  Jiang Rong,  Chen Shu-Fen. Enhanced light absorption and device performances of organic photovoltaic devices with Au tetrahedra nanoparticles. Acta Physica Sinica, 2018, 67(24): 247201. doi: 10.7498/aps.67.20181502
    [8] Gu Hong-Ming, Huang Yong-Qing, Wang Huan-Huan, Wu Gang, Duan Xiao-Feng, Liu Kai, Ren Xiao-Min. Theoretical analysis of new optical microcavity. Acta Physica Sinica, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [9] Sun Long, Ren Hao, Feng Da-Zheng, Wang Shi-Yu, Xing Meng-Dao. Optical and electrical properties of short-pitch solar cells with finite-difference frequency-domain method. Acta Physica Sinica, 2018, 67(17): 178102. doi: 10.7498/aps.67.20180821
    [10] Chang Xiao-Yang, Yao Shun, Zhang Qi-Ling, Zhang Yang, Wu Bo, Zhan Rong, Yang Cui-Bai, Wang Zhi-Yong. Anti-radiation of space triple-junction solar cell based on distributed Bragg reflector structure. Acta Physica Sinica, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [11] Tu Cheng-Wei, Tian Jin-Peng, Wu Ming-Xiao, Liu Peng-Yi. Influence of PTCBI as cathode modification on the performances of Rubrene/C70 based organic solar cells. Acta Physica Sinica, 2015, 64(20): 208801. doi: 10.7498/aps.64.208801
    [12] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [13] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [14] Li Meng, Niu He-Ying, Yao Lu-Yan, Wang Dong-Liang, Zhou Zhong-Po, Ma Heng. Efficiency improvement in organic solar cells by doping cholesteric liquid crystal. Acta Physica Sinica, 2014, 63(24): 248403. doi: 10.7498/aps.63.248403
    [15] Wang Peng, Guo Run-Da, Chen Yu, Yue Shou-Zhen, Zhao Yi, Liu Shi-Yong. Influence of gradient doping on photoelectric conversion efficiency of organic photovoltaic devices. Acta Physica Sinica, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [16] Li Qing, Li Hai-Qiang, Zhao Juan, Huang Jiang, Yu Jun-Sheng. Effect of various cathode modifying layers on the performances of SubPc/C60 based inverted organic solar cells. Acta Physica Sinica, 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [17] Liu Jun-Cheng, Gao Cong-Jie, Li Jiao. Influence of PEDOT:PSS film doped with sorbitol on performances of organic solar cells. Acta Physica Sinica, 2011, 60(7): 078803. doi: 10.7498/aps.60.078803
    [18] Liu Rui, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Cao Xiao-Ning, Kong Chao, Cao Wen-Zhe, Gong Wei. Inserting various cathodic buffer layers to enhancethe performance of Pentacene/C60based organic solar cells. Acta Physica Sinica, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [19] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [20] Xing Hong-Wei, Peng Ying-Quan, Yang Qing-Sen, Ma Chao-Zhu, Wang Run-Sheng, Li Xun-Shuan. Simulation of polymer-fullerene bulk heterojunction solar cell. Acta Physica Sinica, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
Metrics
  • Abstract views:  6336
  • PDF Downloads:  209
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2016
  • Accepted Date:  29 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回
Baidu
map