搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光子晶体的有机太阳能电池研究进展

兰伟霞 顾嘉陆 高晓辉 廖英杰 钟宋义 张卫东 彭艳 孙钰 魏斌

引用本文:
Citation:

基于光子晶体的有机太阳能电池研究进展

兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌

Research progress of organic solar cells based on photonic crystals

Lan Wei-Xia, Gu Jia-Lu, Gao Xiao-Hui, Liao Ying-Jie, Zhong Song-Yi, Zhang Wei-Dong, Peng Yan, Sun Yu, Wei Bin
PDF
HTML
导出引用
  • 随着近几年来光伏产业的迅速发展, 有机太阳能电池因其成本低、重量轻、易于成批次生产、制作工艺简单和可制备成柔性器件等优点备受研究人员关注. 目前, 有机太阳能电池存在光电转换效率偏低、半透明器件显色性较差等问题, 光子晶体的引入为解决上述问题提供了新思路. 本文从光子晶体的结构特性和优化原理入手, 系统性地介绍了一维光子晶体和二维光子晶体对有机太阳能电池的优化效果, 着重分析了一维光子晶体和二维光子晶体引起有机太阳能电池短路电流和光电转换效率提升的原因; 另外, 本文也详细阐述了一维光子晶体可用于调节半透明器件显色性的原因. 最后, 结合现有的有机光电器件研究进展, 本文对基于光子晶体的有机太阳能电池未来的研究方向进行了展望.
    With the rapid development of photovoltaic industry in recent years, organic solar cells have attracted much attention due to their advantages of low cost, light weight, capacity of batch production, simple production process and flexible performance. However, there are still some limitations hindering their commercialization process, including low photoelectric conversion efficiency and poor transmission color rendering. The introduction of photonic crystals provides a new way to solve these two problems. Starting from the optimization principle of photonic crystals, the effects of both one-dimensional photonic crystals and two-dimensional photonic crystals on organic solar cells, especially the short circuit current and photoelectric conversion efficiency, are systematically summarized in this paper. Then, we focus on the reasons for the performance improvement of organic solar cells based on one-dimensional photonic crystals and two-dimensional photonic crystals. The results of the experiments and characterization show that the performance improvement is mainly attributed to the photonic crystal acting as the reflector in the device. Photonic bandgap, a vivid property that the photonic crystals have, can block the light transmitting organic solar cells at a certain frequency. So, the light within the photonic bandgap is reflected back into the device, thus promoting the secondary absorption of light by the active layer which can result in the stronger light absorption capacity of the active layer, and then improving the performance of the device. In addition, the reason why one-dimensional photonic crystals can be used to regulate the color rendering of semitransparent organic solar cell is described in detail. This is of great significance to photovoltaic construction industry because semitransparent organic solar cells with excellent color rendering property can be widely used in it. However, due to the limitation of photonic crystal optimization mechanism, the reported applications so far have failed to improve the filling factor and open circuit voltage of the device, and due to the limitation of its own structure, three-dimensional photonic crystals have not been reported to be used in organic solar cells. Finally, by combining the existing research progress of organic optoelectronic devices, we look into the future research direction of organic solar cells based on photonic crystals.
      通信作者: 钟宋义, zhongsongyi@shu.edu.cn ; 张卫东, zhangwd@sjtu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 2019YFB1703604)和国家自然科学基金青年科学基金(批准号: 62005152)资助的课题
      Corresponding author: Zhong Song-Yi, zhongsongyi@shu.edu.cn ; Zhang Wei-Dong, zhangwd@sjtu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 2019YFB1703604) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62005152)
    [1]

    Yao M N, Li T F, Long Y B, Shen P, Wang G X, Li C L, Liu J S, Guo W B, Wang Y F, Shen L, Zhan X W 2020 Sci. Bull. 65 217Google Scholar

    [2]

    陶春先, 王琦, 李业, 王振云, 卢忠荣, 张大伟 2015 光谱学与光谱分析 35 1173Google Scholar

    Tao C X, Wang Q, LI Y, Wang Z Y, Lu Z R, Zhang D W 2015 Spectrosc. Spect. Anal. 35 1173Google Scholar

    [3]

    方云团, 王张鑫, 范尔盼, 李小雪, 王洪金 2020 69 184101Google Scholar

    Fang Y T, Wang Z X, Fan E P, Li X X, Wang H J 2020 Acta Phys. Sin. 69 184101Google Scholar

    [4]

    刘亮, 韩德专, 石磊 2020 69 157301Google Scholar

    Liu L, Han D Z, Shi L 2020 Acta Phys. Sin. 69 157301Google Scholar

    [5]

    苏安, 蒙成举, 唐秀福, 潘继环, 高英俊 2020 红外与激光工程 48 0817001

    Su A, Meng C J, Tang X F, Pan J H, Gao Y J 2020 Infrared and Laser Engineering 48 0817001

    [6]

    Liu L, Lim S Y, Law C S, Jin B, Abell A D, Ni G, Santos A 2020 ACS Appl. Mater. Interfaces 12 57079Google Scholar

    [7]

    Villeneuve P R, Piché M 1992 Phys. Rev. B 46 4969Google Scholar

    [8]

    Li H, Wang J J, Ma Y T, Chu J, Cheng X A, Shi L, Jiang T 2020 Nanophotonics 9 4337Google Scholar

    [9]

    Wu Y, Liu G J, Li H, Han P S, Cheng J Y, Zhou L 2020 Phys. Status Solidi A 217 1900539Google Scholar

    [10]

    Cheng X, Zhou X, Tao L Y, Yu W T, Liu C, Cheng Y, Ma C J, Shang N Z, Xie J, Liu K H, Liu Z F 2020 Nanoscale 12 14472Google Scholar

    [11]

    McNulty D, Landgraf V, Trabesinger S 2020 RSC Adv. 10 24108Google Scholar

    [12]

    Arunachalam M, Kwag S, Lee I, Kim C S, Lee S K, Kang S H 2019 Korean J. Mater. Res. 29 491Google Scholar

    [13]

    Yu W J, Shen L, Shen P, Meng F X, Long Y B, Wang Y A, Lv T Y, Ruan S P, Chen G H 2013 Sol. Energy Mater. Sol. Cells 117 198Google Scholar

    [14]

    Zhang Y D, Peng Z S, Cai C S, Liu Z, Lin Y B, Zheng W H, Yang J Y, Hou L T, Cao Y 2016 J. Mater. Chem. A 4 11821Google Scholar

    [15]

    Liu F, Zhou Z C, Zhang C, Zhang J Y, Hu Q, Vergote T, P.Russell T, Zhu X Z 2017 Adv. Mater. 29 1606574Google Scholar

    [16]

    Long Y B 2011 Appl. Phys. Lett. 99 093310Google Scholar

    [17]

    Yu W J, Shen L, Long Y B, Guo W B, Meng F X, Ruan S P, Jia X, Ma H S, Chen W Y 2012 Appl. Phys. Lett. 101 153307Google Scholar

    [18]

    Xu G Y, Shen L, Cui C H, Wen S P, Xue R M, Chen W J, Chen H Y, Zhang J W, Li H K, Li Y W, Li Y F 2017 Adv. Funct. Mater. 27 1605908Google Scholar

    [19]

    梁文跃, 钟锦耀, 徐海涛, 邓海东, 王奇生, 龙拥兵 2018 光子学报 47 0823003Google Scholar

    Liang W Y, Zhong J Y, Xu H T, Deng H D, Wang Q S, Long Y B 2018 Acta Photonica Sin. 47 0823003Google Scholar

    [20]

    Zheng W H, Luo X H, Zhang Y D, Ye C B, Qin A J, Cao Y, Hou L T 2020 ACS Appl. Mater. Interfaces 12 23190Google Scholar

    [21]

    Ramirez Quiroz C, Bronnbauer C, Levchuk L, Hou Y, Brabec C, Forberich K 2016 ACS Nano 10 5104Google Scholar

    [22]

    Lu J H, Lin Y H, Jiang B H, Yeh C H, Kao J C, Chen C P 2018 Adv. Funct. Mater. 28 1703398Google Scholar

    [23]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901Google Scholar

    [24]

    Liu J S, Yao M N, Shen L 2019 J. Mater. Chem. C 7 3121Google Scholar

    [25]

    Kang S M, Jang S, Lee J K, Yoon D, Yoo D E, Lee J W, Choi M, Park N G 2016 Small 12 2443Google Scholar

    [26]

    赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林 2018 化学学报 76 9Google Scholar

    Zhao C, Ma Y, Wang Y, Zhou X, Li H Z, Li M Z, Song Y L 2018 Acta Chim. Sinica 76 9Google Scholar

    [27]

    Duche D, Masclaux C, Rouzo J, Gourgon C 2015 Appl. Phys. Lett. 117 053108

    [28]

    Jo H, Sohn A, Shin K S, Kumar B, Kim J H, Kim D W, Kim S W 2014 ACS Appl. Mater. Interfaces 6 1030Google Scholar

    [29]

    Zhou L, Ou Q D, Chen J D, Shen S, Tang J X, Li Y Q, Lee S T 2014 Sci. Rep. 4 4040Google Scholar

    [30]

    Lan W X, Wang Y W, Singh J, Zhu F R 2018 ACS Photonics 5 1144Google Scholar

    [31]

    周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 69 198801Google Scholar

    Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar

  • 图 1  光子晶体结构示意图: (a) 一维; (b) 二维; (c) 三维

    Fig. 1.  Schematic diagram of photonic crystal: (a) One-dimensional; (b) two-dimensional; (c) three-dimensional.

    图 2  (a) 制备有(WO3/LiF)N的STOSC; (b) N取不同值时(WO3/LiF)N的反射光谱; (c) N取不同值时(WO3/LiF)N的透射光谱[13]

    Fig. 2.  (a) Structure of STOSC with (WO3/LiF)N; (b) reflection spectra of (WO3/LiF)N; (c) transmission spectra of (WO3/LiF)N[13].

    图 3  (a) (TiO2/SiO2)横截面的扫描电子显微镜图像(比例尺为200 nm); (b) 制备有(TiO2/SiO2)的STOSC器件[14]

    Fig. 3.  (a) Cross-sectional scanning electron microscope images of (TiO2/SiO2) (Scale 200 nm); (b) the structure of STOSC with (TiO2/SiO2) [14].

    图 4  具有叠层1DPCs的STOSC结构[19]

    Fig. 4.  Configuration of the STOSC based on tandem 1DPCs [19].

    图 5  制备有F-1DFCs的全柔性STOSC器件结构[20]

    Fig. 5.  Device structure of all-flexible STOSC with F-1DPCs [20].

    图 6  STOSC的透视颜色对应的CIE坐标[20] (a) 基于非富勒烯; (b) 基于富勒烯

    Fig. 6.  Corresponding CIE coordinates of all-flexible STOSC [20]: (a) With polymer F-1DPCs; (b) without polymer F-1DPCs.

    图 7  (a) 器件结构; (b) 1DPCs具有不同周期数时P3HT:PCBM的模拟吸收光谱[23]

    Fig. 7.  (a) Device structure; (b) simulated absorptivity spectra in the P3HT:PCBM layer with different periods of 1DPCs [23].

    图 8  图案化的P3HT:PCBM 2DPC的扫描电子显微镜形貌[27]

    Fig. 8.  Scanning electron microscope image of 2D photonic crystal slab in P3HT:PCBM[27].

    图 9  (a) Au NPs在AAO中的分布; (b) 制备有Au NPs-AAO的OSC器件结构[28]

    Fig. 9.  (a) Distribution of Au NPs in AAO; (b) the OSC device with Au NPs-AAO [28].

    图 10  具有MEN的ZnO层和紫外线固化树脂模板的AFM形貌[29] (a) ZnO层; (b) 紫外线固化树脂模板

    Fig. 10.  AFM morphologies of ZnO and UV-resin templates with MEN [29]: (a) ZnO; (b) UV-resin templates.

    图 11  制备有MEN的器件结构以及四种器件的电流密度-电压特征曲线和外量子效率曲线[29] (a) 制备有MEN的器件结构; (b) 电流密度-电压特征曲线; (c) 外量子效率曲线

    Fig. 11.  Device structure with MEN, the J-V characteristic curves and the EQE spectra of the four devices [29]: (a) The device structure with MEN; (b) the J-V characteristic curves; (c) the EQE spectra.

    图 12  活性层为2DPCs结构的OSCs器件结构以及器件的电流密度-电压特征曲线和IPCE曲线[30] (a)器件结构; (b) 电流密度-电压特征曲线; (c) IPCE曲线

    Fig. 12.  Structure with an active layer of 2DPCs, the J-V characteristic curves and the IPCE spectra of the OSC device [30]: (a) The structure; (b) the J-V characteristic curves; (c) the IPCE spectra.

    表 1  无/有(WO3/LiF)N 的STOSC器件的详细性能参数[13]

    Table 1.  Detailed performance parameters of STOSC devices without/with (WO3/LiF)N [13].

    器件类型JSC/
    (mA·cm–2)
    开路电压
    VOC/V
    填充因子(fill
    factor, FF)/%
    PCE/%
    无1DPCs6.000.6450.01.92
    (WO3/LiF)26.390.6450.12.05
    (WO3/LiF)47.010.6450.42.26
    (WO3/LiF)67.510.6448.72.34
    (WO3/LiF)87.900.6448.72.46
    下载: 导出CSV

    表 2  无/有Au NPs-AAO的OSC器件的详细性能参数[28]

    Table 2.  Detailed performance parameters of OSC devices without/with Au NPs-AAO [28].

    器件类型JSC/(mA·cm–2)VOC/VFF/%PCE/%
    无Au NPs-AAO3.980.61431.07
    有Au NPs-AAO6.050.61511.51
    下载: 导出CSV
    Baidu
  • [1]

    Yao M N, Li T F, Long Y B, Shen P, Wang G X, Li C L, Liu J S, Guo W B, Wang Y F, Shen L, Zhan X W 2020 Sci. Bull. 65 217Google Scholar

    [2]

    陶春先, 王琦, 李业, 王振云, 卢忠荣, 张大伟 2015 光谱学与光谱分析 35 1173Google Scholar

    Tao C X, Wang Q, LI Y, Wang Z Y, Lu Z R, Zhang D W 2015 Spectrosc. Spect. Anal. 35 1173Google Scholar

    [3]

    方云团, 王张鑫, 范尔盼, 李小雪, 王洪金 2020 69 184101Google Scholar

    Fang Y T, Wang Z X, Fan E P, Li X X, Wang H J 2020 Acta Phys. Sin. 69 184101Google Scholar

    [4]

    刘亮, 韩德专, 石磊 2020 69 157301Google Scholar

    Liu L, Han D Z, Shi L 2020 Acta Phys. Sin. 69 157301Google Scholar

    [5]

    苏安, 蒙成举, 唐秀福, 潘继环, 高英俊 2020 红外与激光工程 48 0817001

    Su A, Meng C J, Tang X F, Pan J H, Gao Y J 2020 Infrared and Laser Engineering 48 0817001

    [6]

    Liu L, Lim S Y, Law C S, Jin B, Abell A D, Ni G, Santos A 2020 ACS Appl. Mater. Interfaces 12 57079Google Scholar

    [7]

    Villeneuve P R, Piché M 1992 Phys. Rev. B 46 4969Google Scholar

    [8]

    Li H, Wang J J, Ma Y T, Chu J, Cheng X A, Shi L, Jiang T 2020 Nanophotonics 9 4337Google Scholar

    [9]

    Wu Y, Liu G J, Li H, Han P S, Cheng J Y, Zhou L 2020 Phys. Status Solidi A 217 1900539Google Scholar

    [10]

    Cheng X, Zhou X, Tao L Y, Yu W T, Liu C, Cheng Y, Ma C J, Shang N Z, Xie J, Liu K H, Liu Z F 2020 Nanoscale 12 14472Google Scholar

    [11]

    McNulty D, Landgraf V, Trabesinger S 2020 RSC Adv. 10 24108Google Scholar

    [12]

    Arunachalam M, Kwag S, Lee I, Kim C S, Lee S K, Kang S H 2019 Korean J. Mater. Res. 29 491Google Scholar

    [13]

    Yu W J, Shen L, Shen P, Meng F X, Long Y B, Wang Y A, Lv T Y, Ruan S P, Chen G H 2013 Sol. Energy Mater. Sol. Cells 117 198Google Scholar

    [14]

    Zhang Y D, Peng Z S, Cai C S, Liu Z, Lin Y B, Zheng W H, Yang J Y, Hou L T, Cao Y 2016 J. Mater. Chem. A 4 11821Google Scholar

    [15]

    Liu F, Zhou Z C, Zhang C, Zhang J Y, Hu Q, Vergote T, P.Russell T, Zhu X Z 2017 Adv. Mater. 29 1606574Google Scholar

    [16]

    Long Y B 2011 Appl. Phys. Lett. 99 093310Google Scholar

    [17]

    Yu W J, Shen L, Long Y B, Guo W B, Meng F X, Ruan S P, Jia X, Ma H S, Chen W Y 2012 Appl. Phys. Lett. 101 153307Google Scholar

    [18]

    Xu G Y, Shen L, Cui C H, Wen S P, Xue R M, Chen W J, Chen H Y, Zhang J W, Li H K, Li Y W, Li Y F 2017 Adv. Funct. Mater. 27 1605908Google Scholar

    [19]

    梁文跃, 钟锦耀, 徐海涛, 邓海东, 王奇生, 龙拥兵 2018 光子学报 47 0823003Google Scholar

    Liang W Y, Zhong J Y, Xu H T, Deng H D, Wang Q S, Long Y B 2018 Acta Photonica Sin. 47 0823003Google Scholar

    [20]

    Zheng W H, Luo X H, Zhang Y D, Ye C B, Qin A J, Cao Y, Hou L T 2020 ACS Appl. Mater. Interfaces 12 23190Google Scholar

    [21]

    Ramirez Quiroz C, Bronnbauer C, Levchuk L, Hou Y, Brabec C, Forberich K 2016 ACS Nano 10 5104Google Scholar

    [22]

    Lu J H, Lin Y H, Jiang B H, Yeh C H, Kao J C, Chen C P 2018 Adv. Funct. Mater. 28 1703398Google Scholar

    [23]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901Google Scholar

    [24]

    Liu J S, Yao M N, Shen L 2019 J. Mater. Chem. C 7 3121Google Scholar

    [25]

    Kang S M, Jang S, Lee J K, Yoon D, Yoo D E, Lee J W, Choi M, Park N G 2016 Small 12 2443Google Scholar

    [26]

    赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林 2018 化学学报 76 9Google Scholar

    Zhao C, Ma Y, Wang Y, Zhou X, Li H Z, Li M Z, Song Y L 2018 Acta Chim. Sinica 76 9Google Scholar

    [27]

    Duche D, Masclaux C, Rouzo J, Gourgon C 2015 Appl. Phys. Lett. 117 053108

    [28]

    Jo H, Sohn A, Shin K S, Kumar B, Kim J H, Kim D W, Kim S W 2014 ACS Appl. Mater. Interfaces 6 1030Google Scholar

    [29]

    Zhou L, Ou Q D, Chen J D, Shen S, Tang J X, Li Y Q, Lee S T 2014 Sci. Rep. 4 4040Google Scholar

    [30]

    Lan W X, Wang Y W, Singh J, Zhu F R 2018 ACS Photonics 5 1144Google Scholar

    [31]

    周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 69 198801Google Scholar

    Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar

  • [1] 刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析.  , 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [2] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌. 基于三元非富勒烯体系的高效有机太阳能电池.  , 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [3] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响.  , 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [4] 李雪, 王亮, 熊建桥, 邵秋萍, 蒋荣, 陈淑芬. 金纳米四面体增强有机太阳电池光吸收及光伏性能研究.  , 2018, 67(24): 247201. doi: 10.7498/aps.67.20181502
    [5] 孙龙, 任昊, 冯大政, 王石语, 邢孟道. 一种新的基于频域有限差分方法的小周期有机太阳能电池的光电特性.  , 2018, 67(17): 178102. doi: 10.7498/aps.67.20180821
    [6] 杨红卫, 孟珊珊, 高冉冉, 彭硕. 光子晶体传输特性的时域精细积分法分析.  , 2017, 66(8): 084101. doi: 10.7498/aps.66.084101
    [7] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究.  , 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [8] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展.  , 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [9] 李萌, 牛贺莹, 姚路炎, 王栋梁, 周忠坡, 马恒. 胆甾液晶掺杂活性层对有机太阳能电池性能的影响.  , 2014, 63(24): 248403. doi: 10.7498/aps.63.248403
    [10] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响.  , 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [11] 李青, 李海强, 赵娟, 黄江, 于军胜. 阴极修饰层对 SubPc/C60 倒置型有机太阳能电池性能的影响.  , 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [12] 李文胜, 罗时军, 黄海铭, 张琴, 是度芳. 含特异材料光子晶体隧穿模的偏振特性.  , 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [13] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究.  , 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [14] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性.  , 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [15] 刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟. 利用不同阴极缓冲层来改善Pentacene/C60太阳能电池的性能.  , 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [16] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池.  , 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [17] 邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓. 有机体异质结太阳能电池的数值分析.  , 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
    [18] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性.  , 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
    [19] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性.  , 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [20] 于天宝, 刘念华. 光脉冲通过含有色散与增益型缺陷的一维光子晶体的传播.  , 2004, 53(9): 3049-3053. doi: 10.7498/aps.53.3049
计量
  • 文章访问数:  8514
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2021-01-19
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-06-20

/

返回文章
返回
Baidu
map