搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究

赵泽宇 刘晋侨 李爱武 牛立刚 徐颖

引用本文:
Citation:

基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究

赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖

Theoretical study of microcavity-antireflection resonance hybrid modes enhanced absorption of organic solar cells

Zhao Ze-Yu, Liu Jin-Qiao, Li Ai-Wu, Niu Li-Gang, Xu Ying
PDF
导出引用
  • 有机太阳能电池中的微腔模式可以在谐振波长附近增强光与物质的相互作用,提高有源层的光吸收,但是其内禀的窄带宽特性限制了器件的宽频谱吸收性能.本文提出一种模式杂化机制,通过在器件外部引入盖层,激发盖层内支持的抗反射谐振模式,使其与器件内在的微腔模式发生耦合作用,形成两个新的杂化模式.杂化模式可以拓宽模式谐振带宽,有利于增强太阳能电池的宽频谱光吸收.理论计算表明,通过设计杂化模式的谐振位置,基于模式杂化机制的平板器件的最优化总吸收率相比传统的微腔器件的最优化性能提高了37%,并同样优越于广泛研究的基于表面等离激元的光栅机制,这证明提出的模式杂化机制是一种简单高效的光束缚机制.
    Organic solar cells based on small molecules and conjugated polymers are attracting much attention due to their merits of low costs, simple fabrication processes, light weights, and mechanical flexibilities. Metals are usually considered as promising candidates for the semi-transparent electrodes. In such devices, a strong microcavity resonance can be supported between the two electrodes, resulting in a narrowed bandwidth of light absorption, which, unfortunately, will lower the performances of organic solar cells since broadband absorption is always highly desired. To overcome this obstacle, people have proposed many designs such as using ultra-thin electrodes or using dielectric-metal hybrid electrodes. Although the light absorption bandwidth can be improved considerably, the absorption efficiency would be lowered due to the weakened microcavity resonance. This is a tough problem that always bothers both researchers and engineers. To solve this problem, we propose a light trapping scheme based on broadband hybrid modes due to the hybridization between microcavity resonance and antireflection resonance. By introducing a capping layer outside the device structure, antireflection resonance can be excited inside the capping layer and can then couple with the intrinsic microcavity resonance, inducing dual microcavity-antireflection resonance hybrid modes. The hybrid modes are of broadband and their resonant wavelengths can be easily designed by tuning the capping layer thickness and cavity length, since the capping layer thickness would affect the antireflection resonance while the cavity length would affect the microcavity resonance. By matching the resonance with the high absorption region of the active layer, the overall absorptivity of the proposed device can be greatly enhanced by~37% compared to the conventional microcavity based device where only one mode, that is, the microcavity resonance can be supported. Moreover, we compare our light trapping scheme with the surface plasmon-polaritons based scheme where surface waves are excited to help improve the light absorption. We find that the overall absorptivity of the proposed device cannot be further improved when we introduce grating structure into the device in order to excite surface plasmon-polaritons. This is mainly because the light absorption based on our hybrid mode scheme is already thorough so that the introduction of grating structure can only improve the light loss dissipated in the metal electrodes due to scatterings and diffractions by the gratings. Therefore, the proposed hybrid mode based scheme can be considered as a simple and effective light trapping scheme for organic solar cells and may find applications in both polymer and small molecular based organic solar cells.
      通信作者: 徐颖, xuying1969@hotmail.com
    • 基金项目: 国家自然科学基金(批准号:61378053)资助的课题.
      Corresponding author: Xu Ying, xuying1969@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61378053).
    [1]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [2]

    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [3]

    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [4]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese)[黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿2015 64 038103]

    [5]

    Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese)[李青, 李海强, 赵娟, 黄江, 于军胜2013 62 128803]

    [6]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901

    [7]

    Sefunc M A, Okyay A K, Demir H V 2011 Appl. Phys. Lett. 98 093117

    [8]

    Zhang X L, Song J F, Feng J, Sun H B 2013 Opt. Lett. 38 4382

    [9]

    Williamson A, McClean é, Leipold D, Zerulla D, Runge E 2011 Appl. Phys. Lett. 99 093307

    [10]

    Lin H W, Chiu S W, Lin L Y, Huang Z Y, Chen Y H, Lin F, Wong K T 2012 Adv. Mater. 24 2269

    [11]

    Sergeant N P, Hadipour A, Niesen B, Cheyns D, Heremans P, Peumans P, Rand B P 2012 Adv. Mater. 24 728

    [12]

    Chen K S, Yip H L, Salinas J F, Xu Y X, Chueh C C, Jen A K Y 2014 Adv. Mater. 26 3349

    [13]

    Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20

    [14]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Appl. Phys. Lett. 102 103901

    [15]

    Kats M A, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2012 Appl. Phys. Lett. 101 221101

    [16]

    Zhang X L, Feng J, Song J F, Li X B, Sun H B 2011 Opt. Lett. 36 3915

    [17]

    Taflove A 1998 Advances in Computational Electrodynamics:The Finite-Difference Time-Domain Method (London:Artech House)

    [18]

    Kena-Cohen S, Forrest S R 2010 Nat. Photon. 4 371

    [19]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2014 Appl. Phys. Lett. 105 191117

    [20]

    Zhang X L, Feng J, Han X C, Liu Y F, Chen Q D, Song J F, Sun H B 2015 Optica 2 579

    [21]

    Hao Y W, Wang H Y, Zhang Z Y, Zhang X L, Chen Q D, Sun H B 2013 J. Phys. Chem. C 117 26734

    [22]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2015 IEEE Photon. Technol. Lett. 27 821

    [23]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Org. Electron. 14 1577

    [24]

    Min C, Li J, Veronis G, Lee J Y, Fan S, Peumans P 2010 Appl. Phys. Lett. 96 133302

    [25]

    Jin Y, Feng J, Zhang X L, Xu M, Bi Y G, Chen Q D, Wang H Y, Sun H B 2012 Appl. Phys. Lett. 101 163303

    [26]

    Jin Y, Feng J, Xu M, Zhang X L, Wang L, Chen Q D, Wang H Y, Sun H B 2013 Adv. Opt. Mater. 1 809

    [27]

    Bi Y G, Feng J, Chen Y, Liu Y S, Zhang X L, Li Y F, Xu M, Liu Y F, Han X C, Sun H B 2015 Org. Electron. 27 167

    [28]

    Jin Y, Feng J, Zhang X L, Xu M, Chen Q D, Wu Z J, Sun H B 2015 Appl. Phys. Lett. 106 223303

  • [1]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [2]

    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [3]

    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [4]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese)[黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿2015 64 038103]

    [5]

    Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese)[李青, 李海强, 赵娟, 黄江, 于军胜2013 62 128803]

    [6]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901

    [7]

    Sefunc M A, Okyay A K, Demir H V 2011 Appl. Phys. Lett. 98 093117

    [8]

    Zhang X L, Song J F, Feng J, Sun H B 2013 Opt. Lett. 38 4382

    [9]

    Williamson A, McClean é, Leipold D, Zerulla D, Runge E 2011 Appl. Phys. Lett. 99 093307

    [10]

    Lin H W, Chiu S W, Lin L Y, Huang Z Y, Chen Y H, Lin F, Wong K T 2012 Adv. Mater. 24 2269

    [11]

    Sergeant N P, Hadipour A, Niesen B, Cheyns D, Heremans P, Peumans P, Rand B P 2012 Adv. Mater. 24 728

    [12]

    Chen K S, Yip H L, Salinas J F, Xu Y X, Chueh C C, Jen A K Y 2014 Adv. Mater. 26 3349

    [13]

    Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20

    [14]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Appl. Phys. Lett. 102 103901

    [15]

    Kats M A, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2012 Appl. Phys. Lett. 101 221101

    [16]

    Zhang X L, Feng J, Song J F, Li X B, Sun H B 2011 Opt. Lett. 36 3915

    [17]

    Taflove A 1998 Advances in Computational Electrodynamics:The Finite-Difference Time-Domain Method (London:Artech House)

    [18]

    Kena-Cohen S, Forrest S R 2010 Nat. Photon. 4 371

    [19]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2014 Appl. Phys. Lett. 105 191117

    [20]

    Zhang X L, Feng J, Han X C, Liu Y F, Chen Q D, Song J F, Sun H B 2015 Optica 2 579

    [21]

    Hao Y W, Wang H Y, Zhang Z Y, Zhang X L, Chen Q D, Sun H B 2013 J. Phys. Chem. C 117 26734

    [22]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2015 IEEE Photon. Technol. Lett. 27 821

    [23]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Org. Electron. 14 1577

    [24]

    Min C, Li J, Veronis G, Lee J Y, Fan S, Peumans P 2010 Appl. Phys. Lett. 96 133302

    [25]

    Jin Y, Feng J, Zhang X L, Xu M, Bi Y G, Chen Q D, Wang H Y, Sun H B 2012 Appl. Phys. Lett. 101 163303

    [26]

    Jin Y, Feng J, Xu M, Zhang X L, Wang L, Chen Q D, Wang H Y, Sun H B 2013 Adv. Opt. Mater. 1 809

    [27]

    Bi Y G, Feng J, Chen Y, Liu Y S, Zhang X L, Li Y F, Xu M, Liu Y F, Han X C, Sun H B 2015 Org. Electron. 27 167

    [28]

    Jin Y, Feng J, Zhang X L, Xu M, Chen Q D, Wu Z J, Sun H B 2015 Appl. Phys. Lett. 106 223303

  • [1] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性.  , 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [2] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响.  , 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [3] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响.  , 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [4] 兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌. 基于光子晶体的有机太阳能电池研究进展.  , 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [5] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振.  , 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [6] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌. 基于三元非富勒烯体系的高效有机太阳能电池.  , 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [7] 李雪, 王亮, 熊建桥, 邵秋萍, 蒋荣, 陈淑芬. 金纳米四面体增强有机太阳电池光吸收及光伏性能研究.  , 2018, 67(24): 247201. doi: 10.7498/aps.67.20181502
    [8] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析.  , 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [9] 孙龙, 任昊, 冯大政, 王石语, 邢孟道. 一种新的基于频域有限差分方法的小周期有机太阳能电池的光电特性.  , 2018, 67(17): 178102. doi: 10.7498/aps.67.20180821
    [10] 常晓阳, 尧舜, 张奇灵, 张杨, 吴波, 占荣, 杨翠柏, 王智勇. 基于分布式布拉格反射器结构的空间三结砷化镓太阳能电池抗辐照研究.  , 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [11] 涂程威, 田金鹏, 吴明晓, 刘彭义. PTCBI作为阴极修饰层对Rubrene/C70器件性能的影响.  , 2015, 64(20): 208801. doi: 10.7498/aps.64.208801
    [12] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展.  , 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [13] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展.  , 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [14] 李萌, 牛贺莹, 姚路炎, 王栋梁, 周忠坡, 马恒. 胆甾液晶掺杂活性层对有机太阳能电池性能的影响.  , 2014, 63(24): 248403. doi: 10.7498/aps.63.248403
    [15] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响.  , 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [16] 李青, 李海强, 赵娟, 黄江, 于军胜. 阴极修饰层对 SubPc/C60 倒置型有机太阳能电池性能的影响.  , 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [17] 李蛟, 刘俊成, 高从堦. PEDOT:PSS薄膜的山梨醇掺杂对光电池性能的影响.  , 2011, 60(7): 078803. doi: 10.7498/aps.60.078803
    [18] 刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟. 利用不同阴极缓冲层来改善Pentacene/C60太阳能电池的性能.  , 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [19] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池.  , 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [20] 邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓. 有机体异质结太阳能电池的数值分析.  , 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
计量
  • 文章访问数:  6322
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-18
  • 修回日期:  2016-08-29
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map