Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Glass transition in binary mixture of colloidal ellipsoids and spheres

Sun Yan-Li Wang Hua-Guang Zhang Ze-Xin

Citation:

Glass transition in binary mixture of colloidal ellipsoids and spheres

Sun Yan-Li, Wang Hua-Guang, Zhang Ze-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The nature of glass and glass transition are considered to be one of the most fundamental research problems in condensed matter physics. Colloidal suspension provides a novel model system for studying glass and glass transition, since the structures and dynamics of a colloidal system can be quantitatively probed by video microscopy. Traditional systems for studying glass transition typically are single-component systems composed of either isotropic or anisotropic colloidal particles. Recently, glass transition of mixture of isotropic and anisotropic colloids has attracted great attention, such as the observation of rotational glass and translational glass, and the establishment of the two-step glass transition. Similarly, computer simulations have also shown that mixture of isotropic and anisotropic colloidal particles could manifest interesting, new glassy behaviors. However, the experimental study of the glass transition in such a colloidal mixture is still rare. In this paper, we experimentally investigate the glass transition of a binary mixture of colloidal ellipsoids and spheres. The colloidal spheres are polystyrene microspheres with a diameter of 1.6 m, and the ellipsoids are prepared by physically stretching from polystyrene microspheres of 2.5 m in diameter. The major and minor axes of the as-prepared ellipsoid are 2.0 m and 1.2 m, respectively. The mixture is confined between two glass slides to make a quasi-two-dimensional sample. To prevent the mixture from crystallizing, the mixing ratio of ellipsoids and spheres is chosen to be 1/4 in number, which is similar to the mixing ratio used in the classical Kob-Anderson model of binary sphere mixture. We systemically increase the area fraction of colloidal mixture to drive the glass transition. We then employ bright-field video microscopy to record the motion of the particles in the colloidal suspension at a single particle level, and the trajectories of individual particles are obtained by standard particle tracking algorithm. Through the analysis of radial distribution function, Voronoi diagram and local order parameter, we find that the ellipsoids can effectively inhibit the spheres from crystalizing, and the structure of the system remains disordered when increasing the area fraction. For dynamics, mean square displacement and self-intermediate scattering function are calculated. We find that the dynamic process of the system slows down substantially when increasing the area fraction, and the relaxation time of the system increases rapidly and diverges close to the glass transition point predicted by the mode coupling theory. Moreover, we analyze the fast particles that participate in cooperative rearrangement regions (CRRs) in the system, and find that the shapes, sizes and positions of CRRs are closely related to the locations of the ellipsoids in the system.
      Corresponding author: Zhang Ze-Xin, zhangzx@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574222, 21522404) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB140020).
    [1]

    Angell C A 1995 Science 267 1924

    [2]

    Slade L, Levine H, Ievolella J, Wang M 1993 J. Sci. Food Agric. 63 133

    [3]

    Zahn K, Lenke R, Maret G 1999 Phys. Rev. Lett. 82 2721

    [4]

    Debenedetti P G, Truskett T M, Lewis C P, Stillinger F H 2001 Adv. Chem. Eng. 28 21

    [5]

    Wen P 2017 Acta Phys. Sin. 66 176407 (in Chinese)[闻平 2017 66 176407]

    [6]

    Fox T G, Flory P J 1950 J. Appl. Phys. 21 581

    [7]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [8]

    van Megen W, Underwood S M 1993 Phys. Rev. Lett. 70 2766

    [9]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [10]

    Gotze W, Sjogren L 1992 Rep. Prog. Phys. 55 241

    [11]

    Weeks E R, Crocker J C, Levitt A C, Schofield A, Weitz D A 2000 Science 287 627

    [12]

    Kegel W K, Van B A 2000 Science 287 290

    [13]

    Zhang Z, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J, Nagel S R, Yodh A G 2009 Nature 459 230

    [14]

    Yunker P, Zhang Z, Yodh A G 2010 Phys. Rev. Lett. 104 015701

    [15]

    Chong S H, Moreno A J, Sciortino F, Kob W 2005 Phys. Rev. Lett. 94 215701

    [16]

    Yatsenko G, Schweizer K S 2007 J. Chem. Phys. 126 014505

    [17]

    Tripathy M, Schweizer K S 2009 J. Chem. Phys. 130 244906

    [18]

    Jadrich R, Schweizer K S 2012 Phys. Rev. E 86 061503

    [19]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2010 Phys. Rev. Lett. 105 055702

    [20]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2011 J. Chem. Phys. 134 014503

    [21]

    Kang K, Dhont J K G 2013 Phys. Rev. Lett. 110 015901

    [22]

    Zheng Z, Wang F, Han Y 2011 Phys. Rev. Lett. 107 065702

    [23]

    Letz M, Schilling R, Latz A 2000 Phys. Rev. E 62 5173

    [24]

    Jadrich R, Schweizer K S 2012 Phys. Rev. E 86 061503

    [25]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2011 J. Chem. Phys. 134 014503

    [26]

    Xu W S, Duan X, Sun Z Y, An L J 2015 J. Chem. Phys. 142 224506

    [27]

    Takae K, Onuki A 2013 Phys. Rev. E 88 042317

    [28]

    Toxvaerd S, Schrøder T B, Dyre J C 2009 J. Chem. Phys. 130 224501

    [29]

    Champion J A, Katare Y K, Mitragotri S 2007 PNAS 104 11901

    [30]

    Liu H X, Chen K, Hou M Y 2015 Acta Phys. Sin. 64 116302 (in Chinese)[刘海霞, 陈科, 厚美瑛 2015 64 116302]

    [31]

    Chen K 2017 Acta Phys. Sin. 66 178201 (in Chinese)[陈科 2017 66 178201]

    [32]

    Gasser U 2009 J. Phys.:Condens. Matter 21 203101

    [33]

    Kawasaki T, Araki T, Tanaka H 2007 Phys. Rev. Lett. 99 215701

    [34]

    Zhang Z, Yunker P J, Habdas P, Yodh A G 2011 Phys. Rev. Lett. 107 208303

  • [1]

    Angell C A 1995 Science 267 1924

    [2]

    Slade L, Levine H, Ievolella J, Wang M 1993 J. Sci. Food Agric. 63 133

    [3]

    Zahn K, Lenke R, Maret G 1999 Phys. Rev. Lett. 82 2721

    [4]

    Debenedetti P G, Truskett T M, Lewis C P, Stillinger F H 2001 Adv. Chem. Eng. 28 21

    [5]

    Wen P 2017 Acta Phys. Sin. 66 176407 (in Chinese)[闻平 2017 66 176407]

    [6]

    Fox T G, Flory P J 1950 J. Appl. Phys. 21 581

    [7]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [8]

    van Megen W, Underwood S M 1993 Phys. Rev. Lett. 70 2766

    [9]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [10]

    Gotze W, Sjogren L 1992 Rep. Prog. Phys. 55 241

    [11]

    Weeks E R, Crocker J C, Levitt A C, Schofield A, Weitz D A 2000 Science 287 627

    [12]

    Kegel W K, Van B A 2000 Science 287 290

    [13]

    Zhang Z, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J, Nagel S R, Yodh A G 2009 Nature 459 230

    [14]

    Yunker P, Zhang Z, Yodh A G 2010 Phys. Rev. Lett. 104 015701

    [15]

    Chong S H, Moreno A J, Sciortino F, Kob W 2005 Phys. Rev. Lett. 94 215701

    [16]

    Yatsenko G, Schweizer K S 2007 J. Chem. Phys. 126 014505

    [17]

    Tripathy M, Schweizer K S 2009 J. Chem. Phys. 130 244906

    [18]

    Jadrich R, Schweizer K S 2012 Phys. Rev. E 86 061503

    [19]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2010 Phys. Rev. Lett. 105 055702

    [20]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2011 J. Chem. Phys. 134 014503

    [21]

    Kang K, Dhont J K G 2013 Phys. Rev. Lett. 110 015901

    [22]

    Zheng Z, Wang F, Han Y 2011 Phys. Rev. Lett. 107 065702

    [23]

    Letz M, Schilling R, Latz A 2000 Phys. Rev. E 62 5173

    [24]

    Jadrich R, Schweizer K S 2012 Phys. Rev. E 86 061503

    [25]

    Kramb R C, Zhang R, Schweizer K S, Zukoski C F 2011 J. Chem. Phys. 134 014503

    [26]

    Xu W S, Duan X, Sun Z Y, An L J 2015 J. Chem. Phys. 142 224506

    [27]

    Takae K, Onuki A 2013 Phys. Rev. E 88 042317

    [28]

    Toxvaerd S, Schrøder T B, Dyre J C 2009 J. Chem. Phys. 130 224501

    [29]

    Champion J A, Katare Y K, Mitragotri S 2007 PNAS 104 11901

    [30]

    Liu H X, Chen K, Hou M Y 2015 Acta Phys. Sin. 64 116302 (in Chinese)[刘海霞, 陈科, 厚美瑛 2015 64 116302]

    [31]

    Chen K 2017 Acta Phys. Sin. 66 178201 (in Chinese)[陈科 2017 66 178201]

    [32]

    Gasser U 2009 J. Phys.:Condens. Matter 21 203101

    [33]

    Kawasaki T, Araki T, Tanaka H 2007 Phys. Rev. Lett. 99 215701

    [34]

    Zhang Z, Yunker P J, Habdas P, Yodh A G 2011 Phys. Rev. Lett. 107 208303

  • [1] Liu He, Yang Ya-Jing, Tang Yu-Ning, Wei Yan-Ju. Dynamics of acoustically-induced droplet instability. Acta Physica Sinica, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [2] Liang Jian, Wang Hua-Guang, Zhang Ze-Xin. Experimental study of confined diffusion of rough and smooth ellipsoidal colloids. Acta Physica Sinica, 2024, 73(14): 148202. doi: 10.7498/aps.73.20240559
    [3] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering. Acta Physica Sinica, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [4] Gao Yi-Wen, Wang Ying, Tian Wen-De, Chen Kang. Dynamic behavior of active polymer chain in spatially-modulated driven field. Acta Physica Sinica, 2022, 71(24): 240501. doi: 10.7498/aps.71.20221367
    [5] Xu Si-Wei, Yang Xiao-Ning, Yang Da-Xin, Wang Xun-Si, Shen Xiang. Effect of substitution of S for Se on structure and physical properties in Ge11.5As24Se64.5–xSx glass. Acta Physica Sinica, 2021, 70(16): 167101. doi: 10.7498/aps.70.20210536
    [6] Liu Xin-Zhuo, Wang Hua-Guang. Experimental study of diffusion behaviors of an ellipsoidal colloid in spherical colloid systems. Acta Physica Sinica, 2020, 69(23): 238201. doi: 10.7498/aps.69.20201301
    [7] Bei Bang-Kun, Wang Hua-Guang, Zhang Ze-Xin. Two-dimensional crystallization in finite-sized colloidal systems. Acta Physica Sinica, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [8] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [9] Yang Xue, Ding Da-Jun, Hu Zhan, Zhao Guo-Ming. Theoretical study on the structure and stability of neutral and cationic butanone clusters. Acta Physica Sinica, 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [10] Xu Si-Wei, Wang Li, Shen Xiang. Raman scattering and X-ray photoelectron spectra of GexSb20Se80-x Glasses. Acta Physica Sinica, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [11] Liu Hai-Xia, Chen Ke, Hou Mei-Ying. Boson peaks in doped colloid glasses. Acta Physica Sinica, 2015, 64(11): 116302. doi: 10.7498/aps.64.116302
    [12] Xu Zhi-Cheng, Zhong Wei-Rong. Transient kinetics of graphene bombarded by fullerene. Acta Physica Sinica, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [13] Xia Xiao-Fei, Wang Jun-Song. Influence of synaptic plasticity on dynamics of neural mass model:a bifurcation study. Acta Physica Sinica, 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [14] Jian Zeng-Yun, Gao A-Hong, Chang Fang-E, Tang Bo-Bo, Zhang Long, Li Na. Molecular dynamics simulation of the critical and subcritical nuclei during solidification of nickel melt. Acta Physica Sinica, 2013, 62(5): 056102. doi: 10.7498/aps.62.056102
    [15] Qin Wei-Yang, Sun Tao, Jiao Xu-Dong, Yang Yong-Feng. Chaos synchroniztion by function coupling in a class of nonlinear dynamical system. Acta Physica Sinica, 2012, 61(9): 090502. doi: 10.7498/aps.61.090502
    [16] Li Chun-Guang, Chen Jun. Circuit design of tabu learning neuron models and their dynamic behavior. Acta Physica Sinica, 2011, 60(2): 020502. doi: 10.7498/aps.60.020502
    [17] Luo Yu-Feng, Zhong Cheng, Zhang Li, Yan Xue-Jian, Li Jin, Jiang Yi-Ming. An in situ method for characterizing the kinetics of the oxidation process of copper thin films via sheet resistance. Acta Physica Sinica, 2007, 56(11): 6722-6726. doi: 10.7498/aps.56.6722
    [18] Li Jian-Feng, Zhang Hong-Dong, Qiu Feng, Yang Yu-Liang. A new approach to study the dynamics of the deformation of vesicles discrete-space variational method. Acta Physica Sinica, 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
    [19] Fu Wen-Yu, Hou Xi-Miao, He Li-Xia, Zheng Zhi-Gang. Dynamics and statistics in few-body hard-ball systems. Acta Physica Sinica, 2005, 54(6): 2552-2556. doi: 10.7498/aps.54.2552
    [20] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
Metrics
  • Abstract views:  7017
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2018
  • Accepted Date:  16 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回
Baidu
map