搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni熔体凝固过程中临界晶核和亚临界晶核的分子动力学模拟

坚增运 高阿红 常芳娥 唐博博 张龙 李娜

引用本文:
Citation:

Ni熔体凝固过程中临界晶核和亚临界晶核的分子动力学模拟

坚增运, 高阿红, 常芳娥, 唐博博, 张龙, 李娜

Molecular dynamics simulation of the critical and subcritical nuclei during solidification of nickel melt

Jian Zeng-Yun, Gao A-Hong, Chang Fang-E, Tang Bo-Bo, Zhang Long, Li Na
PDF
导出引用
  • 本文用分子动力学模拟研究了Ni熔体以不同冷速凝固后微观结构的演变规律, 并通过理论计算确定出了Ni熔体凝固后获得理想非晶的临界条件. 模拟结果发现冷速小于1011 K/s时, Ni 熔体凝固后形成晶态组织; 冷速在1011 K/s到1014.5 K/s之间时, Ni熔体凝固后形成由晶态结构与非晶态结构组成的混合组织. 冷速小于1010 K/s, Ni 熔体凝固后形成的晶态组织具有fcc结构; 冷速在1010 K/s到1014.5 K/s之间时, Ni熔体凝固后组织中的晶态由fcc和hcp结构层状镶嵌排列构成. 通过分析模拟结果和计算结果, 确定出了Ni熔体凝固后形成理想非晶的临界冷速为1014.5 K/s. 并发现Ni熔体中临界晶核(冷速等于1014.5 K/s)和亚临界晶核(冷速大于1014.5 K/s) 均由fcc和hcp组成层状偏聚结构, 这表明Ni熔体中生长的晶体、临界晶核和晶胚的结构是相同的.
    The microstructures of nickel solidified at different cooling rates are studied by using molecular dynamics simulation and the critical condition for nickel melt to form ideal metallic glass is calculated. The simulation results show that the crystal structure is obtained after the nickel melt has been solidified at a cooling rate that is lower than 1011 K/s; while a mixture is composed of crystal structure and amorphous structure when the cooling rate is in a region from 1011 K/s to 1014.5 K/s. The solidified crystal of nickel is of fcc structure when the cooling rate is lower than 1010 K/s, while it changes into crystal structure composed of fcc and hcp when the cooling rate is between 1010 K/s and 1014.5 K/s. By analyzing the calculation and simulation results, it is determined that the critical cooling rate for nickel melt to form ideal metallic glass is 1014.5 K/s. Moreover, it is found that the structures of the subcritical nuclei (the cooling rate is higher than 1014.5 K/s), critical nuclei (the cooling rate is 1014.5 K/s), and the growing crystal (the cooling rate is lower than 1014.5 K/s) are the lamellar structures composed of fcc and hcp atoms, which indicates that the subcritical nuclei, critical nuclei and the growing crystal have the same structures.
    • 基金项目: 国家自然科学基金 (批准号: 51171136, 51071115, 50671075) 和国家重点基础研究发展计划项目 (批准号: No. 2011CB610403)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51171136, 51071115, 50671075), and the National Basic Research Program of China (Grant No. 2011CB610403).
    [1]

    Bong S L, Geoffrey W B, Robert M S 2009 Science 326 (5955) 980

    [2]

    Gibson J M 2009 Science 326 (5955) 942

    [3]

    Bernal J D 1959 Nature 183 (4655) 141

    [4]

    Hou Z Y, Liu R S, Wang X, Tian Z A, Zhou Q Y, Chen Z H 2007 Acta Phys. Sin. 56 0376 (in Chinese) [侯兆阳, 刘让苏, 王鑫, 田泽安, 周群益, 陈振华 2007 56 0376]

    [5]

    Zhu Z X, Zhang H, Liu C F, Qi W H, Yi D Q, Li Z C 2009 The Chinese Journal of Nonferrous Metals 19 1409 (in Chinese) [朱志雄, 张鸿, 刘超峰, 齐卫宏, 易丹青, 李志成 2009 中国有色金属学报 19 1409]

    [6]

    Lin Y,Liu R S, Tian Z A, Hou Z Y, Zhou L L, Yu Y B 2008 Acta Phys. Chim. Sin. 24 250 (in Chinese) [林艳, 刘让苏, 田泽安, 侯兆阳, 周丽丽, 余亚斌 2008 物理化学学报 24 250]

    [7]

    Tian Z A 2009 Ph. D. Dissertation (Hunan: Hunan University) (in Chinese) [田泽安 2009 博士学位论文 (湖南: 湖南大学)

    [8]

    Qiu H C, Zhang Y, Yang W, Wu J J 2011 Journal of hebei university of technology 40 46 (in Chinese) [邱红臣, 张运, 杨潍, 吴建军 2011 河北工业大学学报 40 46]

    [9]

    Zheng C X, Liu R S, Peng P 2003 J. At. Mol. Phys. 20 163 (in Chinese) [郑采星, 刘让苏, 彭平 2003 原子与分子 20 163]

    [10]

    Li J Y, Liu R S, Zhou Z 1998 J. Mater. Sci. Tech. 14 46

    [11]

    Xu Y F, Sun G X, Chen H, Wang W K 1990 Acta Phys. Sin. 39 836 (in Chinese) [许应凡, 孙帼显, 陈红, 王文魁 1990 39 836]

    [12]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然, 孙春静, 扬中喜, 王瑞, 吉蕾蕾 2006 55 1320]

    [13]

    Zhang H T, Liu R S, Hou Z Y, Zhang A L, Chen X Y, Du S H 2006 Acta Phys. Sin. 55 2409 (in Chinese) [张海涛, 刘让苏, 侯兆阳, 张爱龙, 陈晓莹, 杜生海 2006 55 2409]

    [14]

    Hou H Y, Chen G L, Chen G 2005 Chin. Phys. 14 1009

    [15]

    Wang L, Cong H R, Zhang Y N 2005 Physica B 355 140

    [16]

    Zhang A L, Liu R S, Liang J, Zheng C X 2005 Acta Phys. Chim. Sin. 21 347 (in Chinese) [张爱龙, 刘让苏, 梁佳, 郑采星 2005 物理化学学报 21 347]

    [17]

    Xu Y, Wang L, Bian X F 2002 J. At. Mol. Phys. 19 65 (in Chinese) [徐延, 王丽, 边秀房 2002 原子与分子 19 65]

    [18]

    Luo C L, Zhou Y H, Zhang Y 2000 Acta Phys. Sin. 49 54

    [19]

    Plimpton S J 1995 J. Comp. Phys. 117 1

    [20]

    Adams J B, Foiles S M, W G 1989 J. Mater. Res. 4 102

    [21]

    Wu A L, Zhang T, Ding S L 2006 J. Mol. Phys. 23 485

    [22]

    Zhang T, Zhang X R, Ding S L 2003 J. Mol. Phys. 20 357

    [23]

    Waseda Y 1981 The Structure of Non-Crystalline Materials (New York: McGraw-Hill International Book Company) p292

    [24]

    Honey Cutt J D, Andersen H C 1987 J. Phys. 91 4950

    [25]

    Jian Z Y, Chen J, Chang F E, Zeng Z, He T, Jie W Q 2010 Sci China Tech. Sci. 53 3203

    [26]

    Jian Z Y, Li N, Zhu M, Cheng J, Chang F E, Jie W Q 2012 Acta Mater. 60 3590

    [27]

    Jian Z Y, Chang F E, Ma W H,Yan W 2000 Sci. China Ser. E-Tech 43 10

    [28]

    David R 1989 CRC Handbook of Chemistry and Physics (Tokyo: CRC Press) p21

    [29]

    Turkdogen E T 1980 Physical Chemistry of High Temperature Technology (New York: Academic Press) p12

    [30]

    Brandes E A, Brook G B 1992 Smithells Metals Reference Book (7thed) (Oxford: Butterworth) p25

    [31]

    Guthrie R I L, Lida T 1994 Mater. Sci. Eng. A178 35

    [32]

    Brandes E A, Brook G B 1992 Smithells Metals Reference Book (7thed) (Oxford: Butterworth) p25

    [33]

    Thomopson C V, Spaepen F 1983 Acta Metall 31 2021

  • [1]

    Bong S L, Geoffrey W B, Robert M S 2009 Science 326 (5955) 980

    [2]

    Gibson J M 2009 Science 326 (5955) 942

    [3]

    Bernal J D 1959 Nature 183 (4655) 141

    [4]

    Hou Z Y, Liu R S, Wang X, Tian Z A, Zhou Q Y, Chen Z H 2007 Acta Phys. Sin. 56 0376 (in Chinese) [侯兆阳, 刘让苏, 王鑫, 田泽安, 周群益, 陈振华 2007 56 0376]

    [5]

    Zhu Z X, Zhang H, Liu C F, Qi W H, Yi D Q, Li Z C 2009 The Chinese Journal of Nonferrous Metals 19 1409 (in Chinese) [朱志雄, 张鸿, 刘超峰, 齐卫宏, 易丹青, 李志成 2009 中国有色金属学报 19 1409]

    [6]

    Lin Y,Liu R S, Tian Z A, Hou Z Y, Zhou L L, Yu Y B 2008 Acta Phys. Chim. Sin. 24 250 (in Chinese) [林艳, 刘让苏, 田泽安, 侯兆阳, 周丽丽, 余亚斌 2008 物理化学学报 24 250]

    [7]

    Tian Z A 2009 Ph. D. Dissertation (Hunan: Hunan University) (in Chinese) [田泽安 2009 博士学位论文 (湖南: 湖南大学)

    [8]

    Qiu H C, Zhang Y, Yang W, Wu J J 2011 Journal of hebei university of technology 40 46 (in Chinese) [邱红臣, 张运, 杨潍, 吴建军 2011 河北工业大学学报 40 46]

    [9]

    Zheng C X, Liu R S, Peng P 2003 J. At. Mol. Phys. 20 163 (in Chinese) [郑采星, 刘让苏, 彭平 2003 原子与分子 20 163]

    [10]

    Li J Y, Liu R S, Zhou Z 1998 J. Mater. Sci. Tech. 14 46

    [11]

    Xu Y F, Sun G X, Chen H, Wang W K 1990 Acta Phys. Sin. 39 836 (in Chinese) [许应凡, 孙帼显, 陈红, 王文魁 1990 39 836]

    [12]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然, 孙春静, 扬中喜, 王瑞, 吉蕾蕾 2006 55 1320]

    [13]

    Zhang H T, Liu R S, Hou Z Y, Zhang A L, Chen X Y, Du S H 2006 Acta Phys. Sin. 55 2409 (in Chinese) [张海涛, 刘让苏, 侯兆阳, 张爱龙, 陈晓莹, 杜生海 2006 55 2409]

    [14]

    Hou H Y, Chen G L, Chen G 2005 Chin. Phys. 14 1009

    [15]

    Wang L, Cong H R, Zhang Y N 2005 Physica B 355 140

    [16]

    Zhang A L, Liu R S, Liang J, Zheng C X 2005 Acta Phys. Chim. Sin. 21 347 (in Chinese) [张爱龙, 刘让苏, 梁佳, 郑采星 2005 物理化学学报 21 347]

    [17]

    Xu Y, Wang L, Bian X F 2002 J. At. Mol. Phys. 19 65 (in Chinese) [徐延, 王丽, 边秀房 2002 原子与分子 19 65]

    [18]

    Luo C L, Zhou Y H, Zhang Y 2000 Acta Phys. Sin. 49 54

    [19]

    Plimpton S J 1995 J. Comp. Phys. 117 1

    [20]

    Adams J B, Foiles S M, W G 1989 J. Mater. Res. 4 102

    [21]

    Wu A L, Zhang T, Ding S L 2006 J. Mol. Phys. 23 485

    [22]

    Zhang T, Zhang X R, Ding S L 2003 J. Mol. Phys. 20 357

    [23]

    Waseda Y 1981 The Structure of Non-Crystalline Materials (New York: McGraw-Hill International Book Company) p292

    [24]

    Honey Cutt J D, Andersen H C 1987 J. Phys. 91 4950

    [25]

    Jian Z Y, Chen J, Chang F E, Zeng Z, He T, Jie W Q 2010 Sci China Tech. Sci. 53 3203

    [26]

    Jian Z Y, Li N, Zhu M, Cheng J, Chang F E, Jie W Q 2012 Acta Mater. 60 3590

    [27]

    Jian Z Y, Chang F E, Ma W H,Yan W 2000 Sci. China Ser. E-Tech 43 10

    [28]

    David R 1989 CRC Handbook of Chemistry and Physics (Tokyo: CRC Press) p21

    [29]

    Turkdogen E T 1980 Physical Chemistry of High Temperature Technology (New York: Academic Press) p12

    [30]

    Brandes E A, Brook G B 1992 Smithells Metals Reference Book (7thed) (Oxford: Butterworth) p25

    [31]

    Guthrie R I L, Lida T 1994 Mater. Sci. Eng. A178 35

    [32]

    Brandes E A, Brook G B 1992 Smithells Metals Reference Book (7thed) (Oxford: Butterworth) p25

    [33]

    Thomopson C V, Spaepen F 1983 Acta Metall 31 2021

  • [1] 张洪硕, 周勇壮, 沈咏, 邹宏新. 线型离子阱中钙离子库仑晶体结构和运动轨迹模拟.  , 2023, 72(1): 013701. doi: 10.7498/aps.72.20221674
    [2] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟.  , 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [3] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究.  , 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [4] 颜笑, 辛子华, 张娇娇. 碳硅二炔结构及性质分子动力学模拟研究.  , 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [5] 徐志欣, 李家云, 孙民华, 姚秀伟. 非晶纳米Ni500团簇等温晶化过程中的结构与动力学研究.  , 2013, 62(18): 186101. doi: 10.7498/aps.62.186101
    [6] 司丽娜, 郭丹, 雒建斌. 氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究.  , 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [7] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响.  , 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [8] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究.  , 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [9] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响.  , 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [10] 肖夏杰, 韩晓琴, 刘玉芳. XF2(X=B,N)分子基态的结构与势能函数.  , 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [11] 李勇, 刘锦超, 芦鹏飞, 杨向东. 从常温常压到超临界乙醇的分子动力学模拟.  , 2010, 59(7): 4880-4887. doi: 10.7498/aps.59.4880
    [12] 文玉华, 孙世刚, 张杨, 朱梓忠. 铂纳米晶在升温过程中结构演化与熔化特征的原子级模拟研究.  , 2009, 58(4): 2585-2589. doi: 10.7498/aps.58.2585
    [13] 陈育祥, 谢国锋, 马颖, 周益春. BaTiO3晶体结构及弹性的分子动力学模拟.  , 2009, 58(6): 4085-4089. doi: 10.7498/aps.58.4085
    [14] 谢 朝, 侯 氢, 汪 俊, 孙铁英, 龙兴贵, 罗顺忠. 金属钛中氦团簇融合的分子动力学模拟.  , 2008, 57(8): 5159-5164. doi: 10.7498/aps.57.5159
    [15] 周丽丽, 刘让苏, 侯兆阳, 田泽安, 林 艳, 刘全慧. 冷速对液态金属Pb凝固过程中微观团簇结构演变影响的模拟研究.  , 2008, 57(6): 3653-3660. doi: 10.7498/aps.57.3653
    [16] 李 权, 朱正和. CH, NH和OH自由基基态与低激发态分子结构与势能函数.  , 2006, 55(1): 102-106. doi: 10.7498/aps.55.102
    [17] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟.  , 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [18] 侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星. 冷速对液态金属Na凝固过程中微观结构影响的模拟研究.  , 2005, 54(12): 5723-5729. doi: 10.7498/aps.54.5723
    [19] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究.  , 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [20] 叶子燕, 张庆瑜. 低能Pt原子团簇沉积过程的分子动力学模拟.  , 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
计量
  • 文章访问数:  7346
  • PDF下载量:  1156
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-02
  • 修回日期:  2012-11-05
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map