-
The molecular clusters have attracted increasing attention in recent years due to their applications in areas of laser, synchrotron radiation, molecular beam and time-of-flight mass spectrometry. The cluster structures can be speculated by the mass spectrum measurement and predicted by the quantum chemical methods. It is very important for understanding the solvation kinetics and nucleation to explore the formation and growth of clusters. Meanwhile, it is also beneficial to understanding the atomic or intermolecular interactions in the clusters. The molecular clusters have been studied in our previous work. The acetone clusters (CH3COCH3)n (n 12) were observed by 355 nm pumping laser. The structures of (CH3COCH3)n with n=2-7 were calculated by density functional theory, and some structures of clusters with low energy were given. Subsequently, several butanone cluster fragment ions and protonated butanone (CH3COC2H5, which is formed by taking a methyl change into ethyl from acetone CH3COCH3) clusters were observed by measuring the mass spectra under the irradiations of 355 nm and 118 nm laser lights, respectively. It is important to determine the stable cluster structures and explain the dynamics of the clusters by theoretical calculation. The stable geometric structures of neutral and cationic butanone clusters are optimized at B3LYP/6-31G* and B3LYP/6-311+G** levels based on the density functional theory. The structural characteristics and stabilities of butanone clusters with various sizes are also analyzed. The average binding energy, first-order difference energy, HOMO-LUMO gap and ionized energy are further discussed systematically in the present work. The results show that the structures of (CH3COC2H5)n and (CH3COC2H5)n+ have similar characteristics, single-ring structure is the most stable for them when n=3-7, and the structures also occur in some hydrogen bonded clusters, such as (H2O)n (n=3-6), (NH3)n (n=3-6), (CH3OH)n (n=3-6), and (HCHO)n (n=3-8). Moreover, the stability of double ring structure rises with cluster size increasing. The (CH3COC2H5)3 has the best stability in neutral clusters (CH3COC2H5)n with n=2-7, and it corresponds to the strongest peak in experiment. In addition, the (CH3COC2H5)4+ is the most stable in the cationic clusters with corresponding sizes. Furthermore, the vertical ionization energy of butanone molecule is 9.535 eV via theoretical calculation, which is in agreement with the experimental data. At the same time, the structures of (CH3COC2H5)2+ and (CH3COC2H5)2 are proved to be different by the ionization energy. The results provide a theoretical basis for the formation mechanism of butanone cluster fragment ions in experiment, and it is beneficial to the further study of growing the ketone clusters.
-
Keywords:
- butanone cluster /
- structure /
- stability /
- density functional theory
[1] Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 93601
[2] Zhang C Y, Liu X M 2015 Acta Phys. Sin. 64 163601 (in Chinese) [张春艳, 刘显明 2015 64 163601]
[3] Etienne G, Daniel G, Gabriele S, Ewald J, Peter L, Gerard M, Daniel M N, Knut R A 2008 Phys. Chem. Chem. Phys. 10 1502
[4] Wang X B, Kowalski K, Wang L S, Xantheas S S 2010 J. Chem. Phys. 132 124306
[5] Wei S, Purnell J, Buzza S A, Stanley R J, Castleman A W 1992 J. Chem. Phys. 97 9480
[6] Purnell J, Wei S, Buzza S A, Castleman Jr A W 1993 J. Phys. Chem. 97 12530
[7] Zhang S D, Zhu X J, Wang Y, Kong X H 2007 Acta Phys. Chim. Sin. 23 379 (in Chinese) [张树东, 朱湘君, 王艳, 孔祥和 2007 物理化学学报 23 379]
[8] Xantheas S S, Dunning Jr T H 1993 J. Chem. Phys. 99 8774
[9] Maheshwary S, Patel N, Sathyamurthy N, Kulkarni A D, Gadre S R 2001 J. Phys. Chem. A 105 10525
[10] Gadre S R, Yeole S D, Sahu N 2014 Chem. Rev. 114 12132
[11] Bačić Z, Miller R E 1996 J. Phys. Chem. 100 12945
[12] Janeiro-Barral P E, Mella M, Curotto E 2008 J. Phys. Chem. A 112 2888
[13] Buck U 1994 J. Phys. Chem. 98 5190
[14] Cabaleiro-Lago E M, Ros M A 2000 J. Chem. Phys. 112 2155
[15] Jin R, Chen X H 2012 Acta Phys. Sin. 61 093103 (in Chinese) [金蓉, 谌晓洪 2012 61 093103]
[16] Xu X S, Hu Z, Jin M X, Liu H, Ding D J 2002 Nucl. Phys. Rev. 19 227
[17] Hu Z, Jin M X, Xu X S, Liu H, Ding D J 2003 Chem. J. Chin. Univ. 24 112 (in Chinese) [胡湛, 金明星, 许雪松, 刘航, 丁大军 2003 高等学校化学学报 24 112]
[18] Hu Z, Jin M X, Xu X S, Ding D J 2006 Front. Phys. China 1 275
[19] Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chin. Univ. 27 508
[20] Yang X 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨雪 2013 博士学位论文 (长春: 吉林大学)]
[21] Li Y, Hu Y J, Lu R C, Wang X Y 2000 Acta Phys. Chim. Sin. 16 810 (in Chinese) [李月, 胡勇军, 吕日昌, 王秀岩 2000 物理化学学报 16 810]
[22] Wang R, Kong X H, Zhang S D 2006 Spectrum Lab. 23 417 (in Chinese) [王仍, 孔祥和, 张树东 2006 光谱实验室 23 417]
[23] Becke A D 1993 J. Chem. Phys. 98 5648
[24] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[25] Shimanouchi T 1972 J. Phys. Chem. Ref. Data 1 189
[26] Mouvier G, Hernandez R 1975 Org. Mass Spectrom. 10 958
[27] Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision D.01 (Pittsburgh, PA: Gaussian Inc.)
[28] Guan J W, Hu Y J, Xie M, Bernstein E R 2012 Chem. Phys. 405 117
[29] Liu K, Brown M G, Saykally R J 1997 J. Phys. Chem. A 101 8995
[30] Kryachko E S 1999 Chem. Phys. Lett. 314 353
[31] Chiranjib M, Kulshreshtha S K 2006 Phys. Rev. B 73 155427
[32] Albrecht L, Boyd R J 2015 Comput. Theor. Chem. 1053 328
[33] Li X B, Wang H Y, Yang X D, Zhu Z H 2007 J. Chem. Phys. 126 084505
-
[1] Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 93601
[2] Zhang C Y, Liu X M 2015 Acta Phys. Sin. 64 163601 (in Chinese) [张春艳, 刘显明 2015 64 163601]
[3] Etienne G, Daniel G, Gabriele S, Ewald J, Peter L, Gerard M, Daniel M N, Knut R A 2008 Phys. Chem. Chem. Phys. 10 1502
[4] Wang X B, Kowalski K, Wang L S, Xantheas S S 2010 J. Chem. Phys. 132 124306
[5] Wei S, Purnell J, Buzza S A, Stanley R J, Castleman A W 1992 J. Chem. Phys. 97 9480
[6] Purnell J, Wei S, Buzza S A, Castleman Jr A W 1993 J. Phys. Chem. 97 12530
[7] Zhang S D, Zhu X J, Wang Y, Kong X H 2007 Acta Phys. Chim. Sin. 23 379 (in Chinese) [张树东, 朱湘君, 王艳, 孔祥和 2007 物理化学学报 23 379]
[8] Xantheas S S, Dunning Jr T H 1993 J. Chem. Phys. 99 8774
[9] Maheshwary S, Patel N, Sathyamurthy N, Kulkarni A D, Gadre S R 2001 J. Phys. Chem. A 105 10525
[10] Gadre S R, Yeole S D, Sahu N 2014 Chem. Rev. 114 12132
[11] Bačić Z, Miller R E 1996 J. Phys. Chem. 100 12945
[12] Janeiro-Barral P E, Mella M, Curotto E 2008 J. Phys. Chem. A 112 2888
[13] Buck U 1994 J. Phys. Chem. 98 5190
[14] Cabaleiro-Lago E M, Ros M A 2000 J. Chem. Phys. 112 2155
[15] Jin R, Chen X H 2012 Acta Phys. Sin. 61 093103 (in Chinese) [金蓉, 谌晓洪 2012 61 093103]
[16] Xu X S, Hu Z, Jin M X, Liu H, Ding D J 2002 Nucl. Phys. Rev. 19 227
[17] Hu Z, Jin M X, Xu X S, Liu H, Ding D J 2003 Chem. J. Chin. Univ. 24 112 (in Chinese) [胡湛, 金明星, 许雪松, 刘航, 丁大军 2003 高等学校化学学报 24 112]
[18] Hu Z, Jin M X, Xu X S, Ding D J 2006 Front. Phys. China 1 275
[19] Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chin. Univ. 27 508
[20] Yang X 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨雪 2013 博士学位论文 (长春: 吉林大学)]
[21] Li Y, Hu Y J, Lu R C, Wang X Y 2000 Acta Phys. Chim. Sin. 16 810 (in Chinese) [李月, 胡勇军, 吕日昌, 王秀岩 2000 物理化学学报 16 810]
[22] Wang R, Kong X H, Zhang S D 2006 Spectrum Lab. 23 417 (in Chinese) [王仍, 孔祥和, 张树东 2006 光谱实验室 23 417]
[23] Becke A D 1993 J. Chem. Phys. 98 5648
[24] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[25] Shimanouchi T 1972 J. Phys. Chem. Ref. Data 1 189
[26] Mouvier G, Hernandez R 1975 Org. Mass Spectrom. 10 958
[27] Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision D.01 (Pittsburgh, PA: Gaussian Inc.)
[28] Guan J W, Hu Y J, Xie M, Bernstein E R 2012 Chem. Phys. 405 117
[29] Liu K, Brown M G, Saykally R J 1997 J. Phys. Chem. A 101 8995
[30] Kryachko E S 1999 Chem. Phys. Lett. 314 353
[31] Chiranjib M, Kulshreshtha S K 2006 Phys. Rev. B 73 155427
[32] Albrecht L, Boyd R J 2015 Comput. Theor. Chem. 1053 328
[33] Li X B, Wang H Y, Yang X D, Zhu Z H 2007 J. Chem. Phys. 126 084505
Catalog
Metrics
- Abstract views: 6746
- PDF Downloads: 93
- Cited By: 0