Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical relationship between p-type polysilicon thin film gauge factor and doping concentration

Wang Jian Chuai Rong-Yan

Citation:

Theoretical relationship between p-type polysilicon thin film gauge factor and doping concentration

Wang Jian, Chuai Rong-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The polysilicon thin film piezoresistors are widely used in semiconductor pressure sensors. The polysilicon thin film has good piezoresistance properties, which are determined by the grain structure and doping concentration. The gauge factor of the polysilicon thin film is usually modified according to the relationship between gauge factor and doping concentration. The polysilicon thin films are classified into common polysilicon thin films and polysilicon nanofilms according to their thickness. The common polysilicon thin film thickness is more than 0.3 μm, which has good temperature characteristic, but its piezoresistance coefficient is small. However, the polysilicon nanofilm thickness is less than 0.1 μm, which has good temperature characteristic and high piezoresistance coefficient. The existing piezoresistance theory of the common polysilicon thin film cannot explain reasonably the experimental result of polysilicon nanofilm piezoresistance. Therefore, the tunneling piezoresistance model and an algorithm for the p-type polysilicon nanofilm piezoresistance coefficient were established in 2006. However, this algorithm presents an incomplete fundamental piezoresistance coefficient. In order to improve the polysilicon thin film piezoresistance theory, based on the tunneling piezoresistance model and the mechanism of silicon and the valence band hole conductivity mass with the change of stress, a novel algorithm for the piezoresistance coefficient of the p-type polysilicon thin film is presented. The theoretical formulas for three fundamental piezoresistance coefficients π11, π12 and π44 of the grain neutral and grain boundary regions, are presented respectively. With these formulas for the coefficients, the longitudinal and transverse piezoresistance coefficients for arbitrary crystal direction texture polysilicon can be obtained. According to the structure characteristics, the gauge factors of the p-type polysilicon nanofilm and the common polysilicon thin film are calculated, and then the longitudinal and transverse gauge factors are plotted each as a function of doping concentration, which are compared with the experimental results. According to the experimental results of the polysilicon nanofilm, the grain size is L=30 nm, the grain crystal directions are randomly distributed. The trap density in grain boundary region is Nt=1013 cm-2, the Young's modulus of elastic diaphragm is Y=1.69×1011 Pa, the Poisson ratio of elastic diaphragm is ν=0.062, the grain boundary width is δ=1 nm, and the thickness is 80 nm. The comparison indicates that the gauge factor average error between calculation and experiment is 0.5 times less than the average experimental difference between the maximum and the minimum for each doping concentration. For the common polysilicon thin film, according to the experimental results, its grain size L is 135 nm, thickness is 400 nm, the orientations of crystal grain neutral region are[311],[111] and[110] in the ratio of 49:31:20, i.e., 〈311〉:〈111〉:〈110〉=49:31:20, and the gauge factor calculated result is also good agreement with the experimental result. Therefore, the proposed algorithm is comprehensive and accurate, which is applicable to the p-type common polysilicon film and the polysilicon nanofilm.
      Corresponding author: Wang Jian, wj100_108@126.com
    • Funds: Project supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 20170540718).
    [1]

    Niu D F, Wen W P, Ma L Z 1994 Inst. Tech. Sens. 6 13 (in Chinese) [牛德芳, 闫卫平, 马灵芝 1994 仪表技术与传感器 6 13]

    [2]

    Zhang W X, Mao G R, Yao S Y, Qu H W 1996 J. Tianjin Univ. 29 466 (in Chinese) [张维新, 毛赣如, 姚素英, 曲宏伟 1996 天津大学学报 29 466]

    [3]

    Mao G R, Yao S Y, Qu H W, Li Y S 1997 J. Tianjin Univ. 30 767 (in Chinese) [毛赣如, 姚素英, 曲宏伟, 李永生 1997 天津大学学报 30 767]

    [4]

    Zao X F, Wen D Z 2008 Chin. J. Semicond. 29 45 (in Chinese) [赵晓锋, 温殿忠 2008 半导体学报 29 45]

    [5]

    Zhang D Z, Hu G Q, Chen C W 2009 Inst. Tech. Sens. 11 55 (in Chinese) [张冬至, 胡国清, 陈昌伟 2009 仪表技术与传感器 11 55]

    [6]

    Wang J, Chuai R Y, Yang L J, Dai Q 2015 Sens. Actuators A: Phys. 228 75

    [7]

    Chuai R Y, Wang J, Yi C, Dai Q, Yang L J 2015 IEEE Sens. J. 15 1414

    [8]

    Wu Z Z, Ahn C H 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Kaohsiung Taiwan, China, June 18-22, 2017 p256

    [9]

    Smith C S 1954 Phys. Rev. 94 42

    [10]

    Erskine J C 1983 IEEE Trans. Magn. 30 796

    [11]

    French P J, Evens A G R 1984 Electron. Lett. 20 999

    [12]

    Schubert D, Jenschke W, Uhlig T, Schmidt F M 1987 Sens. Actuators A: Phys. 11 145

    [13]

    Gridchin V A, Lubimsky V M, Sarina M P 1995 Sens. Actuators A: Phys. 49 67

    [14]

    French P J, Evens A G R 1985 Sens. Actuators A: Phys. 8 219

    [15]

    Chuai R Y 2007 Ph. D. Dissertation (Harbin: Harbin Institute Technology) (in Chinese) [揣荣岩 2007 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [16]

    Suzuki K, Hasegawa H, Kanda Y 1984 Jpn. J. Appl. Phys. 23 L871

    [17]

    Kleimann P, Semmache B, Le Berre M, Barbier D 1998 Phys. Rev. B 57 8966

    [18]

    Chuai R Y, Wang J, Wu M L, Liu X W, Jin X S, Yang L J 2012 Chin. J. Semicond. 33 092003 (in Chinese) [揣荣岩, 王健, 吴美乐, 刘晓为, 靳晓诗, 杨理践 2012 半导体学报 33 092003]

    [19]

    Chuai R Y, Liu X W, Huo M X, Song M H, Wang X L, Pan H Y 2006 Chin. J. Semicond. 27 1230 (in Chinese) [揣荣岩, 刘晓为, 霍明学, 宋明浩, 王喜莲, 潘慧艳 2006 半导体学报 27 1230]

    [20]

    Chuai R Y, Liu B, Liu X W 2010 Chin. J. Semicond. 31 032002 (in Chinese) [揣荣岩, 刘斌, 刘晓为 2010 半导体学报 31 032002]

    [21]

    Pikus G E, Bir G L 1974 Symmetry and Strain-Induced Effects in Semiconductors (New York: John Wiley & Son, Inc.) pp110-150

    [22]

    Ma J L, Zhang H M, Song J J, Wang G Y, Wang X Y 2011 Acta Phys. Sin. 60 027101 (in Chinese) [马建立, 张鹤鸣, 宋建军, 王冠宇, 王晓艳 2011 60 027101]

    [23]

    Toriyama T, Sugiyama S 2002 J. Microelectromech. S. 11 598

    [24]

    Hong Y P, Liang T, Ge B E, Wang W, Zheng T L, Li S N, Xiong J J 2014 Chin. J. Semicond. 35 054009 (in Chinese) [洪应平, 梁庭, 葛冰儿, 王伟, 郑庭丽, 李赛男, 熊继军 2014 半导体学报 35 054009]

    [25]

    Li S N, Liang T, Wang W, Hong Y P, Zheng T L, Xiong J J 2015 Chin. J. Semicond. 36 014014 (in Chinese) [李赛男, 梁庭, 王伟, 洪应平, 郑庭丽, 熊继军 2015 半导体学报 36 014014]

    [26]

    Warner R M, Grung B L (translated by L C Z, Feng S W, Zhang W R) 2005 Semiconductor-Device Electronics (Beijing: Publishing House of Electronics Industry) p141 (in Chinese) [沃纳R M, 格兰B L 著 (吕长志, 冯士维, 张万荣 译) 2005 半导体器件电子学 (北京: 电子工业出版社) 第141页]

    [27]

    Shun Y C, Liu Y L, Meng Q H 2000 Design and Manufacture of Pressure Sensor and its Application (Beijing: Metallurgical Industry Press) p62 (in Chinese) [孙以材, 刘玉岭, 孟庆浩 2000压力传感器的设计制造与应用(北京: 冶金工业出版社)第62页]

    [28]

    French P J, Evans A G R 1989 Solid-State Electron. 32 1

  • [1]

    Niu D F, Wen W P, Ma L Z 1994 Inst. Tech. Sens. 6 13 (in Chinese) [牛德芳, 闫卫平, 马灵芝 1994 仪表技术与传感器 6 13]

    [2]

    Zhang W X, Mao G R, Yao S Y, Qu H W 1996 J. Tianjin Univ. 29 466 (in Chinese) [张维新, 毛赣如, 姚素英, 曲宏伟 1996 天津大学学报 29 466]

    [3]

    Mao G R, Yao S Y, Qu H W, Li Y S 1997 J. Tianjin Univ. 30 767 (in Chinese) [毛赣如, 姚素英, 曲宏伟, 李永生 1997 天津大学学报 30 767]

    [4]

    Zao X F, Wen D Z 2008 Chin. J. Semicond. 29 45 (in Chinese) [赵晓锋, 温殿忠 2008 半导体学报 29 45]

    [5]

    Zhang D Z, Hu G Q, Chen C W 2009 Inst. Tech. Sens. 11 55 (in Chinese) [张冬至, 胡国清, 陈昌伟 2009 仪表技术与传感器 11 55]

    [6]

    Wang J, Chuai R Y, Yang L J, Dai Q 2015 Sens. Actuators A: Phys. 228 75

    [7]

    Chuai R Y, Wang J, Yi C, Dai Q, Yang L J 2015 IEEE Sens. J. 15 1414

    [8]

    Wu Z Z, Ahn C H 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Kaohsiung Taiwan, China, June 18-22, 2017 p256

    [9]

    Smith C S 1954 Phys. Rev. 94 42

    [10]

    Erskine J C 1983 IEEE Trans. Magn. 30 796

    [11]

    French P J, Evens A G R 1984 Electron. Lett. 20 999

    [12]

    Schubert D, Jenschke W, Uhlig T, Schmidt F M 1987 Sens. Actuators A: Phys. 11 145

    [13]

    Gridchin V A, Lubimsky V M, Sarina M P 1995 Sens. Actuators A: Phys. 49 67

    [14]

    French P J, Evens A G R 1985 Sens. Actuators A: Phys. 8 219

    [15]

    Chuai R Y 2007 Ph. D. Dissertation (Harbin: Harbin Institute Technology) (in Chinese) [揣荣岩 2007 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [16]

    Suzuki K, Hasegawa H, Kanda Y 1984 Jpn. J. Appl. Phys. 23 L871

    [17]

    Kleimann P, Semmache B, Le Berre M, Barbier D 1998 Phys. Rev. B 57 8966

    [18]

    Chuai R Y, Wang J, Wu M L, Liu X W, Jin X S, Yang L J 2012 Chin. J. Semicond. 33 092003 (in Chinese) [揣荣岩, 王健, 吴美乐, 刘晓为, 靳晓诗, 杨理践 2012 半导体学报 33 092003]

    [19]

    Chuai R Y, Liu X W, Huo M X, Song M H, Wang X L, Pan H Y 2006 Chin. J. Semicond. 27 1230 (in Chinese) [揣荣岩, 刘晓为, 霍明学, 宋明浩, 王喜莲, 潘慧艳 2006 半导体学报 27 1230]

    [20]

    Chuai R Y, Liu B, Liu X W 2010 Chin. J. Semicond. 31 032002 (in Chinese) [揣荣岩, 刘斌, 刘晓为 2010 半导体学报 31 032002]

    [21]

    Pikus G E, Bir G L 1974 Symmetry and Strain-Induced Effects in Semiconductors (New York: John Wiley & Son, Inc.) pp110-150

    [22]

    Ma J L, Zhang H M, Song J J, Wang G Y, Wang X Y 2011 Acta Phys. Sin. 60 027101 (in Chinese) [马建立, 张鹤鸣, 宋建军, 王冠宇, 王晓艳 2011 60 027101]

    [23]

    Toriyama T, Sugiyama S 2002 J. Microelectromech. S. 11 598

    [24]

    Hong Y P, Liang T, Ge B E, Wang W, Zheng T L, Li S N, Xiong J J 2014 Chin. J. Semicond. 35 054009 (in Chinese) [洪应平, 梁庭, 葛冰儿, 王伟, 郑庭丽, 李赛男, 熊继军 2014 半导体学报 35 054009]

    [25]

    Li S N, Liang T, Wang W, Hong Y P, Zheng T L, Xiong J J 2015 Chin. J. Semicond. 36 014014 (in Chinese) [李赛男, 梁庭, 王伟, 洪应平, 郑庭丽, 熊继军 2015 半导体学报 36 014014]

    [26]

    Warner R M, Grung B L (translated by L C Z, Feng S W, Zhang W R) 2005 Semiconductor-Device Electronics (Beijing: Publishing House of Electronics Industry) p141 (in Chinese) [沃纳R M, 格兰B L 著 (吕长志, 冯士维, 张万荣 译) 2005 半导体器件电子学 (北京: 电子工业出版社) 第141页]

    [27]

    Shun Y C, Liu Y L, Meng Q H 2000 Design and Manufacture of Pressure Sensor and its Application (Beijing: Metallurgical Industry Press) p62 (in Chinese) [孙以材, 刘玉岭, 孟庆浩 2000压力传感器的设计制造与应用(北京: 冶金工业出版社)第62页]

    [28]

    French P J, Evans A G R 1989 Solid-State Electron. 32 1

  • [1] Wang Yi-Lin, Lan Zi-Xuan, Du Hui-Wei, Zhao Lei, Ma Zhong-Quan. Phosphorus oxides in heavily doped polysilicon films. Acta Physica Sinica, 2022, 71(18): 188201. doi: 10.7498/aps.71.20220706
    [2] Jia He-Shun, Luo Lei, Li Bing-Lin, Xu Zhen-Hua, Ren Xian-Kun, Jiang Yan-Sen, Cheng Liang, Zhang Chun-Yan. Performance of polycrystal silicon color solar cells. Acta Physica Sinica, 2013, 62(16): 168802. doi: 10.7498/aps.62.168802
    [3] Wang Yong-Tian, Liu Zong-De, Yi Jun, Xue Zhi-Yong. Study on the piezoresistive effect of the multiwalled carbon nanotube films. Acta Physica Sinica, 2012, 61(5): 057302. doi: 10.7498/aps.61.057302
    [4] Kang Kun-Yong, Deng Shu-Kang, Shen Lan-Xian, Sun Qi-Li, Hao Rui-Ting, Hua Qi-Lin, Tang Run-Sheng, Yang Pei-Zhi, Li Ming. Effect of annealing on crystalline property of poly-Si thin-film by Ge-induce crystallization. Acta Physica Sinica, 2012, 61(19): 198101. doi: 10.7498/aps.61.198101
    [5] Su Yuan-Jun, Xu Jun, Zhu Ming, Fan Peng-Hui, Dong Chuang. Hydrogenated poly-crystalline silicon thin films deposited by inductively coupled plasma assisted pulsed dc twin magnetron sputtering. Acta Physica Sinica, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [6] Chen Ying-Tian, T. H. Ho. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(7): 078104. doi: 10.7498/aps.60.078104
    [7] Liu Li-Ying, Zhang Jia-Liang, Guo Qing-Chao, Wang De-Zhen. Diagnostics of the atmospheric pressure plasma jets for plasma enhanced chemical vapor deposition of polycrystalline silicon thin film. Acta Physica Sinica, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [8] Tang Zheng-Xia, Shen Hong-Lie, Jiang Feng, Fang Ru, Lu Lin-Feng, Huang Hai-Bin, Cai Hong. Mechanism of large grain polycrystalline Si preparation by aluminum induced crystallization with temperature gradient profile. Acta Physica Sinica, 2010, 59(12): 8770-8775. doi: 10.7498/aps.59.8770
    [9] Liu Zhao-Jun, Meng Zhi-Guo, Zhao Sun-Yun, Kwok Hoi Sing, Wu Chun-Ya, Xiong Shao-Zhen. Crystallized poly-silicon thin film laterally induced by the Ni/Si oxide source. Acta Physica Sinica, 2010, 59(4): 2775-2782. doi: 10.7498/aps.59.2775
    [10] Luo Chong, Meng Zhi-Guo, Wang Shuo, Xiong Shao-Zhen. Preparation of poly-slicon thin film by aluminum induced crystallization based on Al-salt solution. Acta Physica Sinica, 2009, 58(9): 6560-6565. doi: 10.7498/aps.58.6560
    [11] Qi Jing, Jin Jing, Hu Hai-Long, Gao Ping-Qi, Yuan Bao-He, He De-Yan. Effect of H2 on polycrystalline Si films deposited by plasma-enhanced CVD using Ar-diluted SiH4. Acta Physica Sinica, 2006, 55(11): 5959-5963. doi: 10.7498/aps.55.5959
    [12] Zhao Shu-Yun, Wu Chun-Ya, Li Juan, Liu Jian-Ping, Zhang Xiao-Dan, Zhang Li-Zhu, Meng Zhi-Guo, Xiong Shao-Zhen. The research on metal induced crystallization with chemical source. Acta Physica Sinica, 2006, 55(2): 825-829. doi: 10.7498/aps.55.825
    [13] Huang Rui, Lin Xuan-Ying, Yu Yun-Peng, Lin Kui-Xun, Zhu Zu-Song, Wei Jun-Hong. Effect of hydrogen dilution on structure and optical properties of polycrystalline silicon films. Acta Physica Sinica, 2006, 55(5): 2523-2528. doi: 10.7498/aps.55.2523
    [14] Zhu Zu-Song, Lin Xuan-Ying, Yu Yun-Peng, Lin Kui-Xun, Qiu Gui-Ming, Huang Rui, Yu Chu-Ying. The light-stability of polycrystalline silicon films deposited at low temperatures from SiCl4/H2 mixture. Acta Physica Sinica, 2005, 54(8): 3805-3809. doi: 10.7498/aps.54.3805
    [15] Lin Xuan-Ying, Huang Chuang-Jun, Lin Kui-Xun, Yu Yun-Peng, Yu Chu-Ying, Huang Rui. Raman analysis of microstructure of polycrystalline silicon films deposited at low-temperatures from SiCl4-H2. Acta Physica Sinica, 2004, 53(5): 1558-1561. doi: 10.7498/aps.53.1558
    [16] Chen Yi-Kuang, Lin Kui-Xun, Luo Zhi, Liang Rui-Sheng, Zhou Fu-Fang. Aluminum-induced rapid crystallization of a-Si films at low temperatures in an electric field and microstructure analyses of the crystallized films. Acta Physica Sinica, 2004, 53(2): 582-586. doi: 10.7498/aps.53.582
    [17] Huang Rui, Lin Xuan-Ying, Yu Yun-Peng, Lin Kui-Xun, Yao Ruo-He, Huang Wen-Yong, Wei Jun-Hong, Wang Zhao-Kui, Yu Chu-Ying. Control of grain size during low-temperature growth of polycrystalline silicon films. Acta Physica Sinica, 2004, 53(11): 3950-3955. doi: 10.7498/aps.53.3950
    [18] Wang Liu-Jiu, Zhu Mei-Fang, Liu Feng-Zhen, Liu Jin-Long, Han Yi-Qin. Structual and optoelectronic properties of polycrystalline silicon thin films p repared by hot-wire chemical vapor deposition at low temperatures. Acta Physica Sinica, 2003, 52(11): 2934-2938. doi: 10.7498/aps.52.2934
    [19] HE DE-YAN. CONTROL OF THE SURFACE REACTIONS DURING THE LOW-TEMPERATURE GROWTH OF POLYCRYSTALLINE SILICON FILMS. Acta Physica Sinica, 2001, 50(4): 779-783. doi: 10.7498/aps.50.779
    [20] GUO SHU-WEN, TAN SONG-SHENG, WANG WEI-YUAN. PIEZORESISTIVE PROPERTIES OF BORON-DOPED PECVD μc-Si FILMS. Acta Physica Sinica, 1988, 37(11): 1794-1799. doi: 10.7498/aps.37.1794
Metrics
  • Abstract views:  6504
  • PDF Downloads:  211
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2017
  • Accepted Date:  01 September 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map