Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electron-theoretical study on the influences of torsional deformation on electrical and optical properties of O atom absorbed graphene

Fan Da-Zhi Liu Gui-Li Wei Lin

Citation:

Electron-theoretical study on the influences of torsional deformation on electrical and optical properties of O atom absorbed graphene

Fan Da-Zhi, Liu Gui-Li, Wei Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The effects of torsional deformation on the structural stability, the electronic structures and the optical properties, including adsorption energy, band gap, absorption coefficient and reflectivity of O atom adsorbed graphene are studied by using the first-principles calculations. Our results indicate that the C atom closest to O atom is pulled up, causing the graphene plane to be distorted after the O atom has been adsorbed. The adsorption energy calculations show that due to the adsorption of O atom, the structural stability of graphene system decreases, but the degree of torsion has a weak effect on the structural stability. The analysis of band structure shows that the adsorption of O atom causes the graphene to convert into a semiconductor from a metal. Torsional deformation makes it change from a semiconductor to a metal, and to a semiconductor. The O atom adsorption system with a torsion angle of 12° has an indirect band gap but the band gaps of other systems are all direct bandgaps. Compared with the intrinsic graphene torsion system, the adsorbed O atom system has an electronic structure that is less sensitive to torsional deformation. When the torsion angle changes from 10° to 16°, the bandgap is always stable at around 0.11 eV. And the adsorption system always corresponds to a narrow bandgap semiconductor in this torsion angle range. For optical properties, comparing with the O atoms adsorbed on graphene with the 0° torsion angle, the peaks of the absorption coefficient and the reflectivity of the system are reduced, and have a transform of red shift into blue shift in a torsion angle ranging from 2° to 20°.
      Corresponding author: Liu Gui-Li, lgl63@sina.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51371049).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Castro A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Novoselov K, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [4]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubons S V, Firsov A A 2005 Nature 438 197

    [6]

    Gong K P, Du F, Xia Z H, Durstock M, Dai L M 2009 Science 323 760

    [7]

    Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z 2011 Angew. Chem. Int. Ed. 50 7132

    [8]

    Sun J P, Zhou K L, Liang X D 2015 Acta Phys. Sin. 64 018201 (in Chinese) [孙建平, 周科良, 良晓东 2015 64 018201]

    [9]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K I 2012 ACS Nano 6 1102

    [10]

    Pu N, Shi G, Liu Y, Sun X, Chang J, Sun C, Cer M, Chen C, Wang P, Peng Y, Wu C, Lawes S 2015 J. Power Sources 282 248

    [11]

    Zhou S, Liu G L, Fan D Z 2017 Physica B 506 156

    [12]

    Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501

    [13]

    Han M Y, Ouml, Zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [14]

    Singh A K, Penev E S, Yakobson B I 2010 ACS Nano 4 2510

    [15]

    Li J, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2012 Acta Phys. Sin. 61 056103 (in Chinese) [李骏, 张振华, 王成志, 邓小清, 范志强 2012 61 056103]

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [17]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [20]

    Shanno D F 1970 Math. Comp. 24 647

    [21]

    Carlsson J M, Scheffler M 2006 Phys. Rev. Lett. 96 046806

    [22]

    Jin F, Zhang Z Y, Wang C Z, Deng X Q, Fan Z Q 2012 Acta Phys. Sin. 61 036103 (in Chinese) [金峰, 张振华, 王成志, 邓小清, 范志强 2012 61 036103]

    [23]

    Avouris P, Chen Z, Perebeinos V 2007 Nat. Nanotech. 2 605

    [24]

    Sun J P, Miu Y M, Cao X C 2013 Acta Phys. Sin. 62 036301 (in Chinese) [孙建平, 缪应蒙, 曹相春 2013 62 036301]

    [25]

    Yu Z, Dang Z, Ke X Z, Cui Z 2016 Acta Phys. Sin. 65 248103 (in Chinese) [禹忠, 党忠, 柯熙政, 崔真 2016 65 248103]

    [26]

    Varyhalov A, Sanchez B J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O 2008 Phys. Rev. Lett. 101 157601

    [27]

    Bao C, Yao W, Wang E, Chen C, Avila J, Asensio M C, Zhou S Y 2017 Nano Let. 17 1564

    [28]

    Horiuchi S, Gotou T, Fujiwara M, Sotoaka R, Hirata M, Kimoto K, Asaka T, Yokosawa T, Matsui Y, Watanabe K, Sekita M 2003 Jpn. J. Appl. Phys. 42 L1073

    [29]

    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315

    [30]

    Eroms J, Weiss D 2009 New J. Phys. 11 095021

    [31]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125

    [32]

    Hu Z G, Duan M Y, Xu M, Zhou X, Chen Q Y, Dong C J, Linghu R F 2009 Acta Phys. Sin. 58 1166 (in Chinese) [胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋 2009 58 1166]

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Castro A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Novoselov K, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [4]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubons S V, Firsov A A 2005 Nature 438 197

    [6]

    Gong K P, Du F, Xia Z H, Durstock M, Dai L M 2009 Science 323 760

    [7]

    Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z 2011 Angew. Chem. Int. Ed. 50 7132

    [8]

    Sun J P, Zhou K L, Liang X D 2015 Acta Phys. Sin. 64 018201 (in Chinese) [孙建平, 周科良, 良晓东 2015 64 018201]

    [9]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K I 2012 ACS Nano 6 1102

    [10]

    Pu N, Shi G, Liu Y, Sun X, Chang J, Sun C, Cer M, Chen C, Wang P, Peng Y, Wu C, Lawes S 2015 J. Power Sources 282 248

    [11]

    Zhou S, Liu G L, Fan D Z 2017 Physica B 506 156

    [12]

    Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501

    [13]

    Han M Y, Ouml, Zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [14]

    Singh A K, Penev E S, Yakobson B I 2010 ACS Nano 4 2510

    [15]

    Li J, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2012 Acta Phys. Sin. 61 056103 (in Chinese) [李骏, 张振华, 王成志, 邓小清, 范志强 2012 61 056103]

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [17]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [20]

    Shanno D F 1970 Math. Comp. 24 647

    [21]

    Carlsson J M, Scheffler M 2006 Phys. Rev. Lett. 96 046806

    [22]

    Jin F, Zhang Z Y, Wang C Z, Deng X Q, Fan Z Q 2012 Acta Phys. Sin. 61 036103 (in Chinese) [金峰, 张振华, 王成志, 邓小清, 范志强 2012 61 036103]

    [23]

    Avouris P, Chen Z, Perebeinos V 2007 Nat. Nanotech. 2 605

    [24]

    Sun J P, Miu Y M, Cao X C 2013 Acta Phys. Sin. 62 036301 (in Chinese) [孙建平, 缪应蒙, 曹相春 2013 62 036301]

    [25]

    Yu Z, Dang Z, Ke X Z, Cui Z 2016 Acta Phys. Sin. 65 248103 (in Chinese) [禹忠, 党忠, 柯熙政, 崔真 2016 65 248103]

    [26]

    Varyhalov A, Sanchez B J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O 2008 Phys. Rev. Lett. 101 157601

    [27]

    Bao C, Yao W, Wang E, Chen C, Avila J, Asensio M C, Zhou S Y 2017 Nano Let. 17 1564

    [28]

    Horiuchi S, Gotou T, Fujiwara M, Sotoaka R, Hirata M, Kimoto K, Asaka T, Yokosawa T, Matsui Y, Watanabe K, Sekita M 2003 Jpn. J. Appl. Phys. 42 L1073

    [29]

    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315

    [30]

    Eroms J, Weiss D 2009 New J. Phys. 11 095021

    [31]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125

    [32]

    Hu Z G, Duan M Y, Xu M, Zhou X, Chen Q Y, Dong C J, Linghu R F 2009 Acta Phys. Sin. 58 1166 (in Chinese) [胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋 2009 58 1166]

  • [1] Zhang Ying, Liu Chun-Sheng. Theoretical study of optical and electronic properties of silicether/graphether heterostructure. Acta Physica Sinica, 2021, 70(12): 123102. doi: 10.7498/aps.70.20202193
    [2] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] He Jian-Lin, Liu Gui-Li, Li Xin-Yue. Effect of twisting deformation on electronic structure and optical properties of gold-doped black phosphorene. Acta Physica Sinica, 2021, 70(22): 226301. doi: 10.7498/aps.70.20210795
    [4] Cheng Li, Wang De-Xing, Zhang Yang, Su Li-Ping, Chen Shu-Yan, Wang Xiao-Feng, Sun Peng, Yi Chong-Gui. Electronic structure and optical properties of Cu-O co-doped AlN. Acta Physica Sinica, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [5] Liu Huan, Li Gong-Ping, Xu Nan-Nan, Lin Qiao-Lu, Yang Lei, Wang Cang-Long. A simulation study of structural and optical properties in Cu ions implantation single-crystal rutile. Acta Physica Sinica, 2016, 65(20): 206102. doi: 10.7498/aps.65.206102
    [6] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [7] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. Study of material properties of Fe, S Co-doped SnO2 by first principles. Acta Physica Sinica, 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [8] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of interface relaxation effects on interface structure, band structure and optical property of InAs/GaSb superlattices. Acta Physica Sinica, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [9] Feng Xian-Yang, Lu Yao, Jiang Lei, Zhang Guo-Lian, Zhang Chang-Wen, Wang Pei-Ji. Study of the optical properties of superlattices ZnO doped with indium. Acta Physica Sinica, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [10] Chen Dong, Xiao He-Yang, Jia Wei, Chen Hong, Zhou He-Gen, Li Yi, Ding Kai-Ning, Zhang Yong-Fan. Electronic structures and optical properties of AAl2C4 (A=Zn, Cd, Hg; C=S, Se) semiconductors. Acta Physica Sinica, 2012, 61(12): 127103. doi: 10.7498/aps.61.127103
    [11] Zhang Zeng-Yuan, Gao Xiao-Yong, Feng Hong-Liang, Ma Jiao-Min, Lu Jing-Xiao. Effect of vacuum thermal-annealing temperatures on the microstructure and optical properties of single-phased Ag2O film. Acta Physica Sinica, 2011, 60(3): 036107. doi: 10.7498/aps.60.036107
    [12] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Jiang Lei, Zhang Guo-Lian, Song Peng. Material opto-electronic properties of In, N co-doped SnO2 studied by first principles. Acta Physica Sinica, 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [13] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. First-principles calculation on electronic structure and optical properties of iron-doped SnO2. Acta Physica Sinica, 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [14] Zhang Yu-Fei, Guo Zhi-You, Cao Dong-Xing. Electronic structure and optical property of Boron adsorption on wurtzite ZnO(0001) surface. Acta Physica Sinica, 2011, 60(6): 066802. doi: 10.7498/aps.60.066802
    [15] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [16] Yu Feng, Wang Pei-Ji, Zhang Chang-Wen. Electronic structure and optical properties of Al-doped SnO2. Acta Physica Sinica, 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [17] Kong Xiang-Lan, Hou Qin-Ying, Su Xi-Yu, Qi Yan-Hua, Zhi Xiao-Fen. First-principles study of the electronic structure and optical properties of Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [18] Guan Li, Liu Bao-Ting, Li Xu, Zhao Qing-Xun, Wang Ying-Long, Guo Jian-Xin, Wang Shu-Biao. Electronic structure and optical properties of fluorite-structure TiO2. Acta Physica Sinica, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [19] Pan Hong-Zhe, Xu Ming, Zhu Wen-Jun, Zhou Hai-Ping. First-principles study on the electrical structures and optical properties of β-Si3N4. Acta Physica Sinica, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
    [20] Liang Jun-Wu, Hu Hui-Fang, Wei Jian-Wei, Peng Ping. Effects of oxygen adsorption on the electronic structure and optical properties of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
Metrics
  • Abstract views:  6171
  • PDF Downloads:  150
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2017
  • Accepted Date:  06 September 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map