Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Variation of thermal expansion at low temperature and phonon relaxation time in graphene with temperature

Ren Xiao-Xia Shen Feng-Juan Lin Xin-You Zheng Rui-Lun

Citation:

Variation of thermal expansion at low temperature and phonon relaxation time in graphene with temperature

Ren Xiao-Xia, Shen Feng-Juan, Lin Xin-You, Zheng Rui-Lun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Considering the anharmonic vibrations and the interactions between electron and phonon of atoms, in this article we study the temperature dependence of Grneisen parameter, thermal expansion coefficient at low temperature and phonon relaxation time by using the theory and method of solid state physics. The influences of the anharmonic vibration of the atom on the above parameters are further discussed. The obtained results are as follows. 1) The thermal expansion coefficient of graphene is a negative value when the temperature drops below room temperature. The absolute value of the thermal expansion coefficient of graphene increases monotonically with the increase of temperature. The thermal expansion coefficient of graphene is-3.64×10-6 K-1 at room temperature. 2) The value of Grneisen parameter is zero in the harmonic approximation. If the anharmonic vibration is considered, the Grneisen parameter will increase slowly with the increase of temperature. Its value is between 1.40 and1.42 and the change is almost linear. And we find that the influence of the second anharmonic term is less than that of the first anharmonic term on Grneisen parameter. 3) The phonon relaxation time decreases with the increase of temperature. The rate changes rapidly at low temperature (T<10 K), then it changes very slowly. The phonon relaxation time is almost inversely proportional to temperature when the temperature is higher than 300 K.
      Corresponding author: Zheng Rui-Lun, zhengrui@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51505086), The Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJ1601118, KJ1601111), and the Natural Science Foundation Project of Chongqing (CSTC), China (Grant No. Cstc2015jcyjA40054).
    [1]

    Novoselov K S, Ceim A K, Morozov S V, et al. 2004 Science 306 666

    [2]

    Katsnelson M I 2007 Mater. Today 10 20

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Eudenberg G, Hone J, Stormer H L 2008 Sol. Sta. Com. 146 351

    [4]

    Tian W, Yuan P F, Yu Z L, Tao B B, Hou S Y, Zhang Z H 2015 Acta Phys. Sin. 64 046102 (in Chinese) [田文, 袁鹏飞, 禹卓良, 陶斌斌, 侯森耀, 张振华 2015 64 046102]

    [5]

    Yu D S 2013 Phys. Stat. Sol. 55 813 (in Russian)

    [6]

    Mounet N, Marzari N 2005 Phys. Rev. B 71 205214

    [7]

    Zakharchenko K V, Katsnelson M I, Fasolino A 2009 Phys. Rev. Lett. 102 046808

    [8]

    Jiang J W, Wang J S, Li B 2009 Phys. Rev. B 80 205429

    [9]

    Pozzo M, Alfe D, Lacovig P, Hofmann P, Lizzit S, Baraldi A 2011 Phys. Rev. Lett. 106 135501

    [10]

    Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau N 2009 Nat. Nanotechol. 4 562

    [11]

    Yu D S (in Russian)

    [12]

    Cheng Z F, Zheng R L 2016 Chin. Phys. Lett. 33 046501

    [13]

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701 (in Chinese) [程正富, 郑瑞伦 2016 65 104701]

    [14]

    Yoon D, Son Y W, Cheong H 2011 Nano Leet. 11 3227

    [15]

    Zha X H, Zhang R Q, Lin Z 2014 J. Chem. Phys. 141 064705

    [16]

    Ge X J, Xao K L, Lil J T 2016 Phys. Rev. B 94 165433

    [17]

    Kang K, Abdula D, Cahill D G, Shim M 2010 Phys. Rev. B 81 165405

    [18]

    Lindsay L, Broido D A, Mingo N 2011 Phys. Rev. B 83 235428

    [19]

    Bonini N, Lazzeri M, Marzari N, Mauri F 2007 Phys. Rev. Lett. 99 176802

    [20]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Acta Phys. Sin. 63 154704 (in Chinese) [叶振强, 曹炳阳, 过增元 2014 63 154704]

    [21]

    Davydov S Yu 2012 Phys. Solid Stat. 54 875

    [22]

    Jiang J W, Wang B S, Wang J S, Park S A 2015 J.Phys.: Condens. Matter 27 083011

    [23]

    Zheng R L, Hu X Q 1996 Solid Theory and Application (Chongqing: Southwest Normal University Press)pp316–325 (in Chinese) [郑瑞伦, 胡先权 1996 固体理论及其应用 (重庆: 西南师范大学出版社) 第 316—325 页]

    [24]

    yu D S, Jihonov S K 1996 Phys. Semicond. Technol. 30 968

    [25]

    Ren X X, Kang W, Cheng Z F, Zheng R L 2016 Chin.Phys. Lett. 33 126501

    [26]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

  • [1]

    Novoselov K S, Ceim A K, Morozov S V, et al. 2004 Science 306 666

    [2]

    Katsnelson M I 2007 Mater. Today 10 20

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Eudenberg G, Hone J, Stormer H L 2008 Sol. Sta. Com. 146 351

    [4]

    Tian W, Yuan P F, Yu Z L, Tao B B, Hou S Y, Zhang Z H 2015 Acta Phys. Sin. 64 046102 (in Chinese) [田文, 袁鹏飞, 禹卓良, 陶斌斌, 侯森耀, 张振华 2015 64 046102]

    [5]

    Yu D S 2013 Phys. Stat. Sol. 55 813 (in Russian)

    [6]

    Mounet N, Marzari N 2005 Phys. Rev. B 71 205214

    [7]

    Zakharchenko K V, Katsnelson M I, Fasolino A 2009 Phys. Rev. Lett. 102 046808

    [8]

    Jiang J W, Wang J S, Li B 2009 Phys. Rev. B 80 205429

    [9]

    Pozzo M, Alfe D, Lacovig P, Hofmann P, Lizzit S, Baraldi A 2011 Phys. Rev. Lett. 106 135501

    [10]

    Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau N 2009 Nat. Nanotechol. 4 562

    [11]

    Yu D S (in Russian)

    [12]

    Cheng Z F, Zheng R L 2016 Chin. Phys. Lett. 33 046501

    [13]

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701 (in Chinese) [程正富, 郑瑞伦 2016 65 104701]

    [14]

    Yoon D, Son Y W, Cheong H 2011 Nano Leet. 11 3227

    [15]

    Zha X H, Zhang R Q, Lin Z 2014 J. Chem. Phys. 141 064705

    [16]

    Ge X J, Xao K L, Lil J T 2016 Phys. Rev. B 94 165433

    [17]

    Kang K, Abdula D, Cahill D G, Shim M 2010 Phys. Rev. B 81 165405

    [18]

    Lindsay L, Broido D A, Mingo N 2011 Phys. Rev. B 83 235428

    [19]

    Bonini N, Lazzeri M, Marzari N, Mauri F 2007 Phys. Rev. Lett. 99 176802

    [20]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Acta Phys. Sin. 63 154704 (in Chinese) [叶振强, 曹炳阳, 过增元 2014 63 154704]

    [21]

    Davydov S Yu 2012 Phys. Solid Stat. 54 875

    [22]

    Jiang J W, Wang B S, Wang J S, Park S A 2015 J.Phys.: Condens. Matter 27 083011

    [23]

    Zheng R L, Hu X Q 1996 Solid Theory and Application (Chongqing: Southwest Normal University Press)pp316–325 (in Chinese) [郑瑞伦, 胡先权 1996 固体理论及其应用 (重庆: 西南师范大学出版社) 第 316—325 页]

    [24]

    yu D S, Jihonov S K 1996 Phys. Semicond. Technol. 30 968

    [25]

    Ren X X, Kang W, Cheng Z F, Zheng R L 2016 Chin.Phys. Lett. 33 126501

    [26]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

  • [1] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [2] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Zhang Ting-Ting, Liu Yang, Hu Zhen-Yang, Tang Xiao-Jie. Switching characteristics of anthraquinone molecular devices based on graphene electrodes. Acta Physica Sinica, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [4] Li Liang-Liang, Meng Fan-Wei, Zou Kun, Huang Yao, Peng Yi-Tian. Friction properties of suspended graphene. Acta Physica Sinica, 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [5] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] Wang Yang, Zhao Ling-Ling. Viscoelastic relaxation time of the monoatomic Lennard-Jones system. Acta Physica Sinica, 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [7] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [8] Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He. Research progress of graphene radio frequency devices. Acta Physica Sinica, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [9] Qin Zhi-Hui. Recent progress of graphene-like germanene. Acta Physica Sinica, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [10] Zhang Ke-Sheng, Zhu Ming, Tang Wen-Yong, Ou Wei-Hua, Jiang Xue-Qin. Algorithm for reconstructing vibrational relaxation times in excitable gases by two-frequency acoustic measurements. Acta Physica Sinica, 2016, 65(13): 134302. doi: 10.7498/aps.65.134302
    [11] Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng. Ultrafast dynamic optical properties of graphene. Acta Physica Sinica, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [12] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [13] Xu Zhi-Cheng, Zhong Wei-Rong. Transient kinetics of graphene bombarded by fullerene. Acta Physica Sinica, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [14] Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan. Study on thermal characteristics of phonons in graphene. Acta Physica Sinica, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [15] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [16] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of the limited graphene. Acta Physica Sinica, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [17] Yu Hai-Ling, Zhu Jia-Qi, Cao Wen-Xin, Han Jie-Cai. Process in preparation of metal-catalyzed graphene. Acta Physica Sinica, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [18] Jia Ya-Qiong, Wang Shu, Zhu Ming, Zhang Ke-Sheng, Yuan Fei-Ge. The analytic model between effective heat capacity and relaxation time in gas acoustic relaxation process. Acta Physica Sinica, 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [19] Wang Bing, Wu Xiu-Qing. Relaxation time for an optical bistable system subjected to cross-correlated color noises. Acta Physica Sinica, 2011, 60(7): 074214. doi: 10.7498/aps.60.074214
    [20] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
Metrics
  • Abstract views:  11023
  • PDF Downloads:  328
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2017
  • Accepted Date:  20 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map