Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Algorithm for reconstructing vibrational relaxation times in excitable gases by two-frequency acoustic measurements

Zhang Ke-Sheng Zhu Ming Tang Wen-Yong Ou Wei-Hua Jiang Xue-Qin

Citation:

Algorithm for reconstructing vibrational relaxation times in excitable gases by two-frequency acoustic measurements

Zhang Ke-Sheng, Zhu Ming, Tang Wen-Yong, Ou Wei-Hua, Jiang Xue-Qin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Vibrational relaxation time is a parameter describing the macroscopic behavior of vibrational energy transition rate between molecular internal degrees of freedom (DOF) and external DOF in excitable gas, which determines the relaxation frequency of the maximum point in acoustic absorption spectrum. To measure the vibrational relaxation time, the traditional methods are used to obtain the acoustic absorption spectra by changing the ambient pressure at several operating frequencies. However, these traditional methods are not suitable for real-time measurement due to the complexity of equipment implementation and the non-ideality of test gas under high pressure. In order to solve those problems, we have developed an algorithm [2013 Meas. Sci. Technol. 24 055002] to capture the primary vibrational relaxation processes only based on the measurements of sound absorption and sound speed at two operating frequencies and a single pressure. But the algorithm only can reconstruct the absorption maximum and it cannot capture the relaxation time with high precision. To measure the frequency dependence of the complex effective specific heat of the relaxing gas, an algorithm synthesizing relaxation processes is given by Petculescu and Lueptow [2005 Phys. Rev. Lett. 94 238301]. In its derivation process, relaxational angular frequency was set to be the inverse ratio to relaxation time. However, the relaxational angular frequency was measured in the adiabatic process of transmission thermodynamic, while the relaxation time was obtained in the thermodynamic isothermal process, the derivation confused the two thermodynamic processes, making the algorithm unable to capture the relaxation frequency with high precision. In order to estimate the relaxation time with higher accuracy, in this paper we first obtain the theoretical relationship among the relaxation times under the three types of thermodynamics conditions, i. e., isothermal, adiabatic constant pressure and adiabatic constant volume. Then we correct the relaxation time derivation and propose our corrected algorithm to reconstruct the relaxation frequencies and relaxation times under the conditions of isothermal, adiabatic constant pressure and adiabatic constant volume. In experiments and simulations, the relaxation times and relaxation frequencies reconstructed by our corrected algorithm for various gas compositions including carbon dioxide, methane, chlorine, nitrogen, and oxygen around room temperature are consistent with the experimental data.
      Corresponding author: Zhu Ming, zhuming@mail.hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61461008, 61371139 61571201, 61402122), the Natural Science Foundation of Guizhou Province, China (Grant Nos. [2015]2065, [2014]7361), and the Recruitment Program of Guizhou Institute of Technology (Grant No. XJGC20140601).
    [1]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon)

    [2]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Chem. Phys. 20 1591

    [3]

    Tanczos F I 1956 J. Chem. Phys. 25 439

    [4]

    Zhang K S, Ou W H, Jiang X Q, Long F, Hu M Z 2014 J. Korean Phys. Soc. 65 102

    [5]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [6]

    Zhang K S, Wang S, Zhu M, Ding Y, Hu Y 2013 Chin. Phys. B 22 014305

    [7]

    Zhang K S, Wang S, Zhu M, Hu Y, Jia Y Q 2012 Acta Phys. Sin. 61 174301 (in Chinese) [张克声, 王殊, 朱明, 胡佚, 贾雅琼 2012 61 174301]

    [8]

    Morse P M, Ingard K U 1968 Theoretical Acoustics (New York: McGraw-Hill)

    [9]

    Bhatia A B 1985 Ultrasonic Absorption (New York: Dover)

    [10]

    Mason W P 1965 Physical Acoustics (Vol. II, Pt. A) (New York: Academic Press)

    [11]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic)

    [12]

    Shields F D 1970 J. Acoust. Soc. Am. 47 1262

    [13]

    Zhang K S, Wang S, Zhu M, Ding Y 2013 Meas. Sci. Technol. 24 055002

    [14]

    Zhang K S, Chen L K, Ou W H, Jiang X Q, Long F 2015 Acta Phys. Sin. 64 054302 (in Chinese) [张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞 2015 64 054302]

    [15]

    Hu Y, Wang S, Zhu M, Zhang K S, Liu T T, Xu D Y 2014 Sens. Actuat. B: Chem. 203 1

    [16]

    Bass H E, Sutherland L C, Piercy J, Evans L (in Mason W P, Thurston R N (Vol. XVII) Ed.) 1984 Absorption of Sound by the Atmosphere in Physical Acoustics (Orlando: Academic)

    [17]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [18]

    Bass H E, Bauer H J, Evans L B 1972 J. Acoust. Soc. Am. 52 821

    [19]

    Shields F D 1960 J. Acoust. Soc. Am. 32 180

    [20]

    Angona F A 1953 J. Acoust. Soc. Am. 25 1116

    [21]

    Bass H E 1973 J. Chem. Phys. 58 4783

    [22]

    Petculescu A G, Hall B, Fraenzle R, Phillips S, Lueptow R M 2006 J. Acous. Soc. Am. 120 1779

  • [1]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon)

    [2]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Chem. Phys. 20 1591

    [3]

    Tanczos F I 1956 J. Chem. Phys. 25 439

    [4]

    Zhang K S, Ou W H, Jiang X Q, Long F, Hu M Z 2014 J. Korean Phys. Soc. 65 102

    [5]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [6]

    Zhang K S, Wang S, Zhu M, Ding Y, Hu Y 2013 Chin. Phys. B 22 014305

    [7]

    Zhang K S, Wang S, Zhu M, Hu Y, Jia Y Q 2012 Acta Phys. Sin. 61 174301 (in Chinese) [张克声, 王殊, 朱明, 胡佚, 贾雅琼 2012 61 174301]

    [8]

    Morse P M, Ingard K U 1968 Theoretical Acoustics (New York: McGraw-Hill)

    [9]

    Bhatia A B 1985 Ultrasonic Absorption (New York: Dover)

    [10]

    Mason W P 1965 Physical Acoustics (Vol. II, Pt. A) (New York: Academic Press)

    [11]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic)

    [12]

    Shields F D 1970 J. Acoust. Soc. Am. 47 1262

    [13]

    Zhang K S, Wang S, Zhu M, Ding Y 2013 Meas. Sci. Technol. 24 055002

    [14]

    Zhang K S, Chen L K, Ou W H, Jiang X Q, Long F 2015 Acta Phys. Sin. 64 054302 (in Chinese) [张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞 2015 64 054302]

    [15]

    Hu Y, Wang S, Zhu M, Zhang K S, Liu T T, Xu D Y 2014 Sens. Actuat. B: Chem. 203 1

    [16]

    Bass H E, Sutherland L C, Piercy J, Evans L (in Mason W P, Thurston R N (Vol. XVII) Ed.) 1984 Absorption of Sound by the Atmosphere in Physical Acoustics (Orlando: Academic)

    [17]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [18]

    Bass H E, Bauer H J, Evans L B 1972 J. Acoust. Soc. Am. 52 821

    [19]

    Shields F D 1960 J. Acoust. Soc. Am. 32 180

    [20]

    Angona F A 1953 J. Acoust. Soc. Am. 25 1116

    [21]

    Bass H E 1973 J. Chem. Phys. 58 4783

    [22]

    Petculescu A G, Hall B, Fraenzle R, Phillips S, Lueptow R M 2006 J. Acous. Soc. Am. 120 1779

  • [1] Zhao Xing-Yu, Wang Li-Na, Han Hong-Bo, Shang Jie-Ying. Comparative investigations on α relaxation and conductivity of probe ions in a series of small molecular liquids. Acta Physica Sinica, 2024, 73(14): 147701. doi: 10.7498/aps.73.20240478
    [2] Yao Jia-Feng, Hu Song-Pei, Yang Lu, Wu Yang, Han Wei, Liu Kai. Tongue tumor tissue recognition based on bioelectrical impedance spectroscopy. Acta Physica Sinica, 2021, 70(15): 158704. doi: 10.7498/aps.70.20210297
    [3] Wang Yang, Zhao Ling-Ling. Viscoelastic relaxation time of the monoatomic Lennard-Jones system. Acta Physica Sinica, 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [4] Liang Yu-Hong, Li Hong-Juan, Yin Ji-Wen. Intraband relaxation process in PbSe quantum dot studied by lattice relaxation method. Acta Physica Sinica, 2019, 68(12): 127301. doi: 10.7498/aps.68.20190187
    [5] Zhang Xiang-Qun, Wang Shu, Zhu Ming. Acoustic rotational relaxation of hydrogen around normal temperture. Acta Physica Sinica, 2018, 67(9): 094301. doi: 10.7498/aps.67.20172665
    [6] Ren Xiao-Xia, Shen Feng-Juan, Lin Xin-You, Zheng Rui-Lun. Variation of thermal expansion at low temperature and phonon relaxation time in graphene with temperature. Acta Physica Sinica, 2017, 66(22): 224701. doi: 10.7498/aps.66.224701
    [7] Sun Qi-Cheng, Liu Chuan-Qi, Gordon G D Zhou. Relaxation of granular elasticity. Acta Physica Sinica, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [8] Jia Ya-Qiong, Wang Shu, Zhu Ming, Zhang Ke-Sheng, Yuan Fei-Ge. The analytic model between effective heat capacity and relaxation time in gas acoustic relaxation process. Acta Physica Sinica, 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [9] Wang Bing, Wu Xiu-Qing. Relaxation time for an optical bistable system subjected to cross-correlated color noises. Acta Physica Sinica, 2011, 60(7): 074214. doi: 10.7498/aps.60.074214
    [10] Sang Cui-Cui, Wan Jian-Jie, Dong Chen-Zhong, Ding Xiao-Bin, Jiang Jun. Relaxation effect in photoionization processes of lithium. Acta Physica Sinica, 2008, 57(4): 2152-2160. doi: 10.7498/aps.57.2152
    [11] Chen Xiao-Xue, Teng Li-Hua, Liu Xiao-Dong, Huang Qi-Wen, Wen Jin-Hui, Lin Wei-Zhu, Lai Tian-Shu. Study of injection and relaxation of electron spins in InGaN film by time-resolved absorption spectroscopy. Acta Physica Sinica, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [12] Tian Jian-Hui, Han Xu, Liu Gui-Rong, Long Shu-Yao, Qin Jin-Qi. Investigation of the SiC nano-bar relaxation characteristics. Acta Physica Sinica, 2007, 56(2): 643-648. doi: 10.7498/aps.56.643
    [13] Xin Hong-Liang, Yuan Wang-Zhi, Cheng Jin-Ke, Lin Hong, Ruan Jian-Zhong, Zhao Zhen-Jie. The giant magneto-impedance effect and frequency dependence of magnetization processes in NiFeCoP/BeCu composite wire. Acta Physica Sinica, 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [14] Wang He, Li Geng-Ying. Combination of inversion and fitting as an effective method for the analysis of NMR relaxation data. Acta Physica Sinica, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [15] HU GANG, A. GRECOS. THE EXACT SOLUTION OF RELAXATION PROCESS OF AN OSCILLATOR IN A THERMO-BATH. Acta Physica Sinica, 1985, 34(1): 105-111. doi: 10.7498/aps.34.105
    [16] LI JING-DE. THE PYROELECTRIC RELAXATION EFFECT. Acta Physica Sinica, 1984, 33(11): 1563-1568. doi: 10.7498/aps.33.1563
    [17] XU JI-REN, HUANG NAN-TANG, JIANG YI-FENG, FU GUANG-SHENG, WU ZHEN-QIU. INFRARED ABSORPTION INVESTIGATION OF VIBRATIONAL EXCITED RELAXATIONS IN BCl3. Acta Physica Sinica, 1981, 30(11): 1456-1463. doi: 10.7498/aps.30.1456
    [18] ZHANG KAI-MING, YE LING. A PRELIMINARY STUDY ON THE RELAXATION OF Si(111) SURFACE ATOMS. Acta Physica Sinica, 1980, 29(1): 122-126. doi: 10.7498/aps.29.122
    [19] HUO YU-PING. THE LONG TIME ASYMPTOTIC BEHAVIOUR OF THE CORRELATION FUNCTIONS——THE INFLUENCES OF THE WAVES ON THE RELAXATION PROCESSES. Acta Physica Sinica, 1980, 29(1): 73-92. doi: 10.7498/aps.29.73
    [20] MA BEN-KUN. SPIN-LATTICE RELAXATION. Acta Physica Sinica, 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
Metrics
  • Abstract views:  6125
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2016
  • Accepted Date:  18 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map