Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physics model of fluid and particle simulation method for road traffic

Cui Man Xue Hui-Feng Chen Fu-Zhen Bu Fan-Biao

Citation:

Physics model of fluid and particle simulation method for road traffic

Cui Man, Xue Hui-Feng, Chen Fu-Zhen, Bu Fan-Biao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The rapid development of social economy speeds up urbanization, but also brings urban traffic congestion and urban traffic problems, such as frequent accidents, energy consumption and environmental pollution. Road traffic, as a part of the most important components in city traffic, is a complex system problem. To solve the difficulties in current city development and people's production and living, and to promote the development of national economy and society greatly, we need to study the road traffic. In order to solve the problem of complex road traffic system influenced by many factors, a physics model of pseudo-fluid of macroscopic road traffic system is established in combination with the traditional Lighthill-Whitham-Richards physics model based on kinetic theory of granular flow. A coupling method of meshless particles with grid is adopted to solve the new traffic model, which is then applied to solving the typical traffic problems. In the new model, vehicles are likened to hard particles. Car-following is likened to collision interactions between particles. Driver driving affected by known road conditions is likened to the driving force exerted by external fluid in two-phase system consisting of fluid and particle, and the influence of vehicles in different lanes is likened to viscous effect between particles. Thus the pseudo-fluid model of road traffic system is deduced and established based on the kinetic theory of granular flow. Then, the traffic multiphase system model is established by adding pedestrians and other non-motorized vehicles to the particles with different attributes. The boundary model of road traffic system based on pipeline theory is established through comparing the boundary model of traffic lights, barricades and forbidden lane changes to wall boundary conditions. Therefore, a complex large traffic model with different initial and boundary conditions considering the complex factors of the system is established. The Smoothed discrete particle hydrodynamics (SDPH) is used to discretize the vehicle system model. A one-to-one correspondence between SDPH vehicles and real vehicles is established through adding the vehicle flow properties characterized by SDPH particles. Then the two-fluid model of road traffic system is solved by combining the finite volume method. Thus, a new simulation approach to solving the macroscopic model of traffic flow is established. Finally, the effects of mixed flow composed of motorized and non-motorized vehicles and vehicles merging on the road traffic are simulated by employing the established model and method. The real-time distribution of the vehicle on the road is obtained, and the variation of the vehicle flow density with time is analyzed. The simulation results are in good agreement with the measured values, which shows that the new model and method are effective and reliable, and they provide a new way of solving the road traffic problem.
      Corresponding author: Chen Fu-Zhen, chen_fu_zhen@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1501253, 11502132) and the Research project of the Education Department of Shaanxi Province, China (Grant No. 14JK1132).
    [1]

    Zhang Y Y, Wu Z, Guo M H 2011 J. Fudan Univ. 6 767 (in Chinese) [张英莹, 吴正, 郭明旻 2011 复旦学报(自然科学版) 6 767]

    [2]

    Treiber M, Hennecke A, Helbing D 2000 Phys. Rev. E 62 1805

    [3]

    Chen R, Dong L Y 2005 J. Shanghai Univ. 1 93 (in Chinese) [陈然, 董力耘 2005 上海大学学报 (自然科学版) 1 93]

    [4]

    Buendia G M, Viswanathan G M, Kenkre V M 2008 Phys. Rev. E 78 56110

    [5]

    Gao Z Y, Li K P 2005 Chin. Phys. Lett. 22 2711

    [6]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin. 49 403 (in Chinese) [张家树, 肖先赐 2000 49 403]

    [7]

    Gan J C, Xiao X C 2003 Acta Phys. Sin. 52 2995 (in Chinese) [甘建超, 肖先赐 2003 52 2995]

    [8]

    Pipes L A 1900 Transport. Res. 1 21

    [9]

    Kesting A, Treiber M 2008 Transport. Res. Rec. 2088 148

    [10]

    Saifuzzaman M, Zheng Z 2014 Transport. Res. C: Emer. 48 379

    [11]

    Chakroborty P, Kikuchi S 1999 Transport. Res. C: Emer. 7 209

    [12]

    Wolfram S 1984 Nature 311 419

    [13]

    Li X, Wu Q, Jiang R 2001 Phys. Rev. E 64 66128

    [14]

    Pandey G, Rao K R, Mohan D 2015 A Review of Cellular Automata Model for Heterogeneous Traffic Conditions (Berlin: Springer International Publishing) p471

    [15]

    Jiang R, Wu Q S, Wang B H 2002 Phys. Rev. E 66 36104

    [16]

    Lighthill M J, Whitham G B 1955 Proc. Royal Soc. 229 317

    [17]

    Richards P I 1956 Oper. Res. 4 42

    [18]

    Payne H J 1971 Math. Model Public Syst. 28 51

    [19]

    Papageorgiou M, Posch B, Schmidt G 1983 Transport.Res. B: Meth. 17 107

    [20]

    Papageorgiou M 1983 Applications of Automatic Control Concepts to Traffic Flow Modeling and Control (Berlin: Springer-Verlag) p50

    [21]

    Khne R D 1989 International Conference on Applications of Advanced Technologies in Transportation Engineering San Diego, February 5-8 1989 p287

    [22]

    Khne R D 1984 The Ninth International Symposium on Transportation and Traffic Theory Delft, Netherlands, July 11-13, 1984 p21

    [23]

    Michalopoulos P G, Beskos D E, Lin J K 1984 Transport. Res. B: Meth. 18 409

    [24]

    Helbing D 1998 Phys. Rev. E 55 5498

    [25]

    Wu Z 1994 Acta Mech. Sin. 26 149 (in Chinese) [吴正 1994 力学学报 26 149]

    [26]

    Prigogine I, Herman R 1971 Science 173 513

    [27]

    Prigogine I, Herman R, Schechter R S 2008 IEEE Trans. Syst. Man 2 295

    [28]

    Herman R, Lam T, Prigogine I 1972 Kinetic Theory of Vehicular Traffic: Comparison with Data (Catonsville: INFORMS) p295

    [29]

    Bonzani I, Mussone L 2009 Math. Comput. Model. 49 610

    [30]

    Phillips W F 1979 Transport. Plann. Technol. 5 131

    [31]

    Ding J, Gidaspow D 1990 AIche J. 36 523

    [32]

    Jenkins J T, Savage S B 1983 J. Fluid Mech. 130 187

    [33]

    Lun C K K, Savage S B, Jeffrey D J, Chepurniy N 1984 J. Fluid Mech. 140 223

    [34]

    Zheng Z, Ahn S, Monsere C M 2010 Accid. Anal. Prev. 42 626

    [35]

    Li S, Liu W K 2002 Appl. Mech. Rev. 55 1

    [36]

    Chen F Z, Qiang H F, Zhang H, Gao W R 2017 Int. J. Numer. Meth. Eng. 109 73

    [37]

    Chen F Z, Qiang H F, Gao W R 2015 Comput. Chem. Eng. 77 135

    [38]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 130202 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 130202]

    [39]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 230206]

    [40]

    Chen F Z, Qiang H F, Miao G, Gao W R 2015 Acta Phys. Sin. 64 110202 (in Chinese) [陈福振, 强洪夫, 苗刚, 高巍然 2015 64 110202]

    [41]

    Chen F Z, Qiang H F, Gao W R, Zhou S (in Chinese) [陈福振, 强洪夫, 高巍然, 周算 2015 推进技术 36 175]

    [42]

    Schiller L, Naumann Z 1935 Zeitschrift des Vereins Deutscher Ingenieure 77 318

    [43]

    Li W Q, Wang W, Li T Z, Li D M 2002 J. Southeast Univ. 32 252 (in Chinese) [李文权, 王炜, 李铁柱, 李冬梅 2002 东南大学学报 32 252]

    [44]

    Ouyang J X 2014 Ph. D. Dissertation (Shanghai: Tongji University) (in Chinese) [欧阳吉祥 2014 博士学位论文 (上海: 同济大学)]

    [45]

    Guan H Z, Chen Y Y, Liu X M, Ren F T (in Chinese) [关宏志, 陈艳艳, 刘小明, 任福田 2001 北京工业大学学报 27 12]

    [46]

    Liu L H, Guan H Z (in Chinese) [刘兰辉, 关宏志 2000 北京工业大学学报 26 46]

    [47]

    Jia N, Ma S F (in Chinese) [贾宁, 马寿峰 2011 系统仿真学报 23 390]

    [48]

    Feng X, Wang X F 2016 J. Highway Transport. Res. Devel. 33 132 (in Chinese) [冯雪, 王喜富 2016 公路交通科技 33 132]

  • [1]

    Zhang Y Y, Wu Z, Guo M H 2011 J. Fudan Univ. 6 767 (in Chinese) [张英莹, 吴正, 郭明旻 2011 复旦学报(自然科学版) 6 767]

    [2]

    Treiber M, Hennecke A, Helbing D 2000 Phys. Rev. E 62 1805

    [3]

    Chen R, Dong L Y 2005 J. Shanghai Univ. 1 93 (in Chinese) [陈然, 董力耘 2005 上海大学学报 (自然科学版) 1 93]

    [4]

    Buendia G M, Viswanathan G M, Kenkre V M 2008 Phys. Rev. E 78 56110

    [5]

    Gao Z Y, Li K P 2005 Chin. Phys. Lett. 22 2711

    [6]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin. 49 403 (in Chinese) [张家树, 肖先赐 2000 49 403]

    [7]

    Gan J C, Xiao X C 2003 Acta Phys. Sin. 52 2995 (in Chinese) [甘建超, 肖先赐 2003 52 2995]

    [8]

    Pipes L A 1900 Transport. Res. 1 21

    [9]

    Kesting A, Treiber M 2008 Transport. Res. Rec. 2088 148

    [10]

    Saifuzzaman M, Zheng Z 2014 Transport. Res. C: Emer. 48 379

    [11]

    Chakroborty P, Kikuchi S 1999 Transport. Res. C: Emer. 7 209

    [12]

    Wolfram S 1984 Nature 311 419

    [13]

    Li X, Wu Q, Jiang R 2001 Phys. Rev. E 64 66128

    [14]

    Pandey G, Rao K R, Mohan D 2015 A Review of Cellular Automata Model for Heterogeneous Traffic Conditions (Berlin: Springer International Publishing) p471

    [15]

    Jiang R, Wu Q S, Wang B H 2002 Phys. Rev. E 66 36104

    [16]

    Lighthill M J, Whitham G B 1955 Proc. Royal Soc. 229 317

    [17]

    Richards P I 1956 Oper. Res. 4 42

    [18]

    Payne H J 1971 Math. Model Public Syst. 28 51

    [19]

    Papageorgiou M, Posch B, Schmidt G 1983 Transport.Res. B: Meth. 17 107

    [20]

    Papageorgiou M 1983 Applications of Automatic Control Concepts to Traffic Flow Modeling and Control (Berlin: Springer-Verlag) p50

    [21]

    Khne R D 1989 International Conference on Applications of Advanced Technologies in Transportation Engineering San Diego, February 5-8 1989 p287

    [22]

    Khne R D 1984 The Ninth International Symposium on Transportation and Traffic Theory Delft, Netherlands, July 11-13, 1984 p21

    [23]

    Michalopoulos P G, Beskos D E, Lin J K 1984 Transport. Res. B: Meth. 18 409

    [24]

    Helbing D 1998 Phys. Rev. E 55 5498

    [25]

    Wu Z 1994 Acta Mech. Sin. 26 149 (in Chinese) [吴正 1994 力学学报 26 149]

    [26]

    Prigogine I, Herman R 1971 Science 173 513

    [27]

    Prigogine I, Herman R, Schechter R S 2008 IEEE Trans. Syst. Man 2 295

    [28]

    Herman R, Lam T, Prigogine I 1972 Kinetic Theory of Vehicular Traffic: Comparison with Data (Catonsville: INFORMS) p295

    [29]

    Bonzani I, Mussone L 2009 Math. Comput. Model. 49 610

    [30]

    Phillips W F 1979 Transport. Plann. Technol. 5 131

    [31]

    Ding J, Gidaspow D 1990 AIche J. 36 523

    [32]

    Jenkins J T, Savage S B 1983 J. Fluid Mech. 130 187

    [33]

    Lun C K K, Savage S B, Jeffrey D J, Chepurniy N 1984 J. Fluid Mech. 140 223

    [34]

    Zheng Z, Ahn S, Monsere C M 2010 Accid. Anal. Prev. 42 626

    [35]

    Li S, Liu W K 2002 Appl. Mech. Rev. 55 1

    [36]

    Chen F Z, Qiang H F, Zhang H, Gao W R 2017 Int. J. Numer. Meth. Eng. 109 73

    [37]

    Chen F Z, Qiang H F, Gao W R 2015 Comput. Chem. Eng. 77 135

    [38]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 130202 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 130202]

    [39]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 230206]

    [40]

    Chen F Z, Qiang H F, Miao G, Gao W R 2015 Acta Phys. Sin. 64 110202 (in Chinese) [陈福振, 强洪夫, 苗刚, 高巍然 2015 64 110202]

    [41]

    Chen F Z, Qiang H F, Gao W R, Zhou S (in Chinese) [陈福振, 强洪夫, 高巍然, 周算 2015 推进技术 36 175]

    [42]

    Schiller L, Naumann Z 1935 Zeitschrift des Vereins Deutscher Ingenieure 77 318

    [43]

    Li W Q, Wang W, Li T Z, Li D M 2002 J. Southeast Univ. 32 252 (in Chinese) [李文权, 王炜, 李铁柱, 李冬梅 2002 东南大学学报 32 252]

    [44]

    Ouyang J X 2014 Ph. D. Dissertation (Shanghai: Tongji University) (in Chinese) [欧阳吉祥 2014 博士学位论文 (上海: 同济大学)]

    [45]

    Guan H Z, Chen Y Y, Liu X M, Ren F T (in Chinese) [关宏志, 陈艳艳, 刘小明, 任福田 2001 北京工业大学学报 27 12]

    [46]

    Liu L H, Guan H Z (in Chinese) [刘兰辉, 关宏志 2000 北京工业大学学报 26 46]

    [47]

    Jia N, Ma S F (in Chinese) [贾宁, 马寿峰 2011 系统仿真学报 23 390]

    [48]

    Feng X, Wang X F 2016 J. Highway Transport. Res. Devel. 33 132 (in Chinese) [冯雪, 王喜富 2016 公路交通科技 33 132]

  • [1] Xu Xiao-Yang, Zhou Ya-Li, Yu Peng. Improved smoothed particle dynamics simulation of eXtended Pom-Pom viscoelastic fluid. Acta Physica Sinica, 2023, 72(3): 034701. doi: 10.7498/aps.72.20221922
    [2] Zheng Lin, Mo Song-Ping, Li Yu-Xiu, Chen Ying, Xu Jin-Liang. Analysis of dynamic characteristics of two-component granular mixture segregation in thin shear cell. Acta Physica Sinica, 2019, 68(16): 164703. doi: 10.7498/aps.68.20190322
    [3] Zhang Xiao-Shun, Zhang Ding-Guo, Chen Si-Jia, Hong Jia-Zhen. Several dynamic models of a large deformation flexible beam based on the absolute nodal coordinate formulation. Acta Physica Sinica, 2016, 65(9): 094501. doi: 10.7498/aps.65.094501
    [4] Sun Peng-Nan, Li Yun-Bo, Ming Fu-Ren. Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [5] Lei Juan-Mian, Huang Can. An improved pre-processing method for somooth particle hydrodynamics. Acta Physica Sinica, 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [6] Zhou Nan, Chen Shuo. The study of fluid with free surface by many-body dissipative particle dynamics. Acta Physica Sinica, 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [7] Chen Fu-Zhen, Qiang Hong-Fu, Gao Wei-Ran. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [8] Jiang Tao, Ren Jin-Lian, Xu Lei, Lu Lin-Guang. A corrected smoothed particle hydrodynamics approach to solve the non-isothermal non-Newtonian viscous fluid flow problems. Acta Physica Sinica, 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [9] Liu Chuan-Ping, Wang Li, Zhang Fu-Weng. Energy transfer and dissipation in vibrational granular bed. Acta Physica Sinica, 2014, 63(4): 044502. doi: 10.7498/aps.63.044502
    [10] Su Tie-Xiong, Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong. A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [11] Jiang Yi-Min, Liu Mario. Hydrodynamic theory of grains, water and air. Acta Physica Sinica, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [12] Han Ya-Wei, Qiang Hong-Fu, Zhao Jiu-Ling, Gao Wei-Ran. A new repulsive model for solid boundary condition in smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [13] Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong, Liu Han-Tao. Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [14] Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin, Su Tie-Xiong. Dissipative particle dynamics simulation of flow around a mesoscopic sphere with different Reynolds numbers. Acta Physica Sinica, 2012, 61(6): 064704. doi: 10.7498/aps.61.064704
    [15] Ma Qing-Lu, Liu Wei-Ning, Sun Di-Hua. Multi-parameter fusion applied to road traffic condition forecasting. Acta Physica Sinica, 2012, 61(16): 169501. doi: 10.7498/aps.61.169501
    [16] Qiang Hong-Fu, Liu Kai, Chen Fu-Zhen. Numerical implementation of deformation and motion of droplet at the interface between vapor and solid surface with smoothed particle hydrodynamics methodology. Acta Physica Sinica, 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [17] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [18] Song Li-Jun, Yan Dong, Gai Yong-Jie, Wang Yu-Bo. Quantum chaos and the dynamic properties of single-particle coherence in Dicke model. Acta Physica Sinica, 2010, 59(6): 3695-3699. doi: 10.7498/aps.59.3695
    [19] Lu Lu-Yi, Gu Zhao-Lin, Luo Xi-Lian, Lei Kang-Bin. An electrostatic dynamic model for wind-blown sand systems. Acta Physica Sinica, 2008, 57(11): 6939-6945. doi: 10.7498/aps.57.6939
    [20] Chen Bo, Tong Pei-Qing. Dynamics of many particles in the urn model. Acta Physica Sinica, 2005, 54(12): 5554-5558. doi: 10.7498/aps.54.5554
Metrics
  • Abstract views:  7443
  • PDF Downloads:  234
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2017
  • Accepted Date:  21 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map