-
Mg2Ge with anti-fluorite structure at ambient pressure is characterized as a narrow band semiconductor and increasing pressure results in a decrease of the gap. In this work, the band structure of anti-fluorite Mg2Ge under high pressure is studied by first principles calculations, which suggests that Mg2Ge becomes metallic at 7.5 GPa as a result of band gap closure. The enthalpy difference between anti-fluorite phase and anti-cotunnite phase under high pressure is calculated by the first-principles plane-wave method within the pseudopotential and generalized gradient approximation. The results show that Mg2Ge undergoes a phase transition from the anti-fluorite structure to anti-cotunnite structure at 11.0 GPa. Then we investigate experimentally the pressure-induced metallization of Mg2Ge by electric resistance measurement in strip anvil cell and Raman spectroscopy by diamond anvil cell. The pressure distribution is homogeneous along the central line of the strip anvil and the pressure is changed ccontinuously by using a hydraulically driven two-anvil press. Raman scattering experiment is performed at pressure up to 21.1 GPa on a back scattered Raman spectrometer. The wavelength of excitation laser is 532 nm. No pressure-transmitting is used and pressure is determined by the shift of the ruby luminescence line. It is found that neither a discontinuous change of electrical resistance at 8.7 GPa nor Raman vibration modes of Mg2Ge appear above 9.8 GPa. The disappearance of the Raman vibration mode is ascribed to the metallization since the the free carrier concentration rises after metallization has prevented the laser light from penetrating into the sample. We compare these results with those of resistivity measurements in diamond anvil cell. Li et al.[2015 Appl. Phys. Lett. 107 142103] reported that Mg2Ge becomes metallic phase at 7.4 GPa and is transformed into metallic anti-cotunnite phase at around 9.5 GPa. We speculate that the discontinuous change in electric resistance at 8.7 GPa is ascribed to the gap closure of anti-fluorite phase and Mg2Ge may transform into the anti-cotunnite phase above 9.8 GPa.
-
Keywords:
- Mg2Ge /
- metallization /
- Raman scattering under high pressure /
- first principles calculation
[1] Tani J, Kido H 2008 Comp. Mater. Sci. 42 531
[2] Chung P L, Whitten W B, Danielson G C 1965 J. Phys. Chem. Solids 26 1753
[3] Guo S D 2016 Eur. Phys. J. B 89 1
[4] Liu H Y, Zhu Z Z, Yang Y 2008 Acta Phys. Sin. 57 5182 (in Chinese)[刘慧英, 朱梓忠, 杨勇2008 57 5182]
[5] Mao J, Kim H S, Shuai J, Liu Z, He R, Saparamadu U, Tian F, Liu W, Ren Z 2016 Acta Mater. 103 633
[6] Martin J J 1972 J. Phys. Chem. Solids 33 1139
[7] Stella A, Lynch D W 1964 J. Phys. Chem. Solids 25 1253
[8] Corkill J L, Cohen M L 1993 Phys. Rev. B 48 17138
[9] Xu J A, Wang Y Y, Xu M H 1980 Acta Phys. Sin. 29 1063 (in Chinese)[徐济安, 王彦云, 徐敏华1980 29 1063]
[10] Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401(in Chinese)[王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春2014 63 186401]
[11] Jin C Q, Liu Q Q, Deng Z, Zhang S J, Xing L Y, Zhu J L, Kong P P, Wang X C 2013 Chin. J. High Press. Phys. 27 473 (in Chinese)[靳常青, 刘青清, 邓正, 张思佳, 邢令义, 朱金龙, 孔盼盼, 望贤成2013高压 27 473]
[12] Zhang S J, Wang X C, Sammynaiken R, Tse J S, Yang L X, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506
[13] Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24
[14] Kalarasse F, Bennecer B 2008 J. Phys. Chem. Solids 69 1775
[15] Yu F, Sun J X, Chen T H 2011 Phys. B:Condens. Matter 406 1789
[16] Li Y, Gao Y, Han Y, Liu C, Peng G, Wang Q, Ke F, Ma Y, Gao C 2015 Appl. Phys. Lett. 107 142103
[17] Tang F, Chen L Y, Liu X R, Wang J L, Zhang L J, Hong S M 2016 Acta Phys. Sin. 65 100701 (in Chinese)[唐菲, 陈丽英, 刘秀茹, 王君龙, 张林基, 洪时明2016 65 100701]
[18] Getting I C 1998 Metrologia 35 119
[19] Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435
[20] Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705
[21] Mao H K, Xu J A, Bell P M 1986 J. Geophys. Res 91 4673
[22] Payne M C, Teter M P, Allan D C 1992 Rev. Modern Phys. 64 1045
[23] Segall M D, Lindan P J D, Probert M J 2002 J. Phys.:Condens. Matter 14 2717
[24] Vanderbilt D 1990 Phys. Rev. B 41 7892
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768
[27] Grosch G H, Range K J 1996 J. Alloy. Compd. 235 250
[28] Zhou D, Liu J, Xu S, Peng P 2012 Comp. Mater. Sci. 51 409
[29] Janot R, Cuevas F, Latroche M, Percheron-Guégan A 2006 Intermetallics 14 163
[30] Buchenauer C J, Cardona M 1971 Phys. Rev. B 3 2504
[31] Anastassakis E, Perry C H 1971 Phys. Rev. B 4 1251
[32] Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705
[33] Mohiuddin T M G, Lombardo A, Nair R R 2009 Phys. Rev. B 79 205433
[34] Stella A, Brothers A D, Hopkins R H 1967 Phys. Status Solidi 23 697
[35] Benhelal O, Chahed A, Laksari S 2005 Phys. Status Solidi 242 2022
-
[1] Tani J, Kido H 2008 Comp. Mater. Sci. 42 531
[2] Chung P L, Whitten W B, Danielson G C 1965 J. Phys. Chem. Solids 26 1753
[3] Guo S D 2016 Eur. Phys. J. B 89 1
[4] Liu H Y, Zhu Z Z, Yang Y 2008 Acta Phys. Sin. 57 5182 (in Chinese)[刘慧英, 朱梓忠, 杨勇2008 57 5182]
[5] Mao J, Kim H S, Shuai J, Liu Z, He R, Saparamadu U, Tian F, Liu W, Ren Z 2016 Acta Mater. 103 633
[6] Martin J J 1972 J. Phys. Chem. Solids 33 1139
[7] Stella A, Lynch D W 1964 J. Phys. Chem. Solids 25 1253
[8] Corkill J L, Cohen M L 1993 Phys. Rev. B 48 17138
[9] Xu J A, Wang Y Y, Xu M H 1980 Acta Phys. Sin. 29 1063 (in Chinese)[徐济安, 王彦云, 徐敏华1980 29 1063]
[10] Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401(in Chinese)[王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春2014 63 186401]
[11] Jin C Q, Liu Q Q, Deng Z, Zhang S J, Xing L Y, Zhu J L, Kong P P, Wang X C 2013 Chin. J. High Press. Phys. 27 473 (in Chinese)[靳常青, 刘青清, 邓正, 张思佳, 邢令义, 朱金龙, 孔盼盼, 望贤成2013高压 27 473]
[12] Zhang S J, Wang X C, Sammynaiken R, Tse J S, Yang L X, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506
[13] Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24
[14] Kalarasse F, Bennecer B 2008 J. Phys. Chem. Solids 69 1775
[15] Yu F, Sun J X, Chen T H 2011 Phys. B:Condens. Matter 406 1789
[16] Li Y, Gao Y, Han Y, Liu C, Peng G, Wang Q, Ke F, Ma Y, Gao C 2015 Appl. Phys. Lett. 107 142103
[17] Tang F, Chen L Y, Liu X R, Wang J L, Zhang L J, Hong S M 2016 Acta Phys. Sin. 65 100701 (in Chinese)[唐菲, 陈丽英, 刘秀茹, 王君龙, 张林基, 洪时明2016 65 100701]
[18] Getting I C 1998 Metrologia 35 119
[19] Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435
[20] Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705
[21] Mao H K, Xu J A, Bell P M 1986 J. Geophys. Res 91 4673
[22] Payne M C, Teter M P, Allan D C 1992 Rev. Modern Phys. 64 1045
[23] Segall M D, Lindan P J D, Probert M J 2002 J. Phys.:Condens. Matter 14 2717
[24] Vanderbilt D 1990 Phys. Rev. B 41 7892
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768
[27] Grosch G H, Range K J 1996 J. Alloy. Compd. 235 250
[28] Zhou D, Liu J, Xu S, Peng P 2012 Comp. Mater. Sci. 51 409
[29] Janot R, Cuevas F, Latroche M, Percheron-Guégan A 2006 Intermetallics 14 163
[30] Buchenauer C J, Cardona M 1971 Phys. Rev. B 3 2504
[31] Anastassakis E, Perry C H 1971 Phys. Rev. B 4 1251
[32] Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705
[33] Mohiuddin T M G, Lombardo A, Nair R R 2009 Phys. Rev. B 79 205433
[34] Stella A, Brothers A D, Hopkins R H 1967 Phys. Status Solidi 23 697
[35] Benhelal O, Chahed A, Laksari S 2005 Phys. Status Solidi 242 2022
Catalog
Metrics
- Abstract views: 5941
- PDF Downloads: 223
- Cited By: 0