-
稀土金属在工程技术领域具有重要应用,同时因其与f电子相关的独特行为受到凝聚态物理的广泛关注。本文结合第一性原理计算与数据汇编,对稀土金属的弹性性质随原子序数变化开展分析,并以Ce和Yb为例,对高压0-15 GPa范围内的的弹性演化进行了研究讨论,对比了不同f电子处理方法的模拟表现。结果表明,稀土金属随原子序数变化存在明显的延展性差异,在压力作用下的相变处弹性性质会发生显著改变。特别是,在Ce的fcc同构相变和Yb的fcc-bcc相变中出现脆、延性转变。这些与随原子序数或压力条件改变发生的成键特性变化密切相关。此外,研究发现,将f电子作为芯层电子处理的模拟方法能够较好地描述稀土金属在常压下的弹性性质,但在描述高压下的结构相变及弹性性质演化趋势时,将f电子作为价电子并考虑电子关联效应修正的处理方法则更为有效。本文数据集可在科学数据银行中访问获取https://www.scidb.cn/s/IBnuQz。Rare earth metals are of significant importance in engineering and technological applications, while their unique f-electron-related behaviors have attracted broad interest in condensed matter physics. In this work, we investigate the elastic properties of rare earth metals from Ce to Yb by combining first-principles calculations with systematic data compilation. Focusing on Ce and Yb as representative cases, we investigate the evolution of their elastic properties under high-pressure conditions (0-15 GPa) and systematically compare the simulation performance of different f-electron treatment approaches. The results indicate a pronounced ductility difference between light and heavy rare earth metals at ambient pressure. Under pressure, the elastic properties of Ce and Yb undergo marked changes at phase transitions. Specifically, the B/G ratio (a key indicator of metal ductility) decreases from approximately 2.0 in light lanthanides to around 1.5 in heavy lanthanides, crossing the critical brittleness threshold of 1.75. Notably, during the fcc isostructural phase transition in Ce and the fcc-bcc phase transition in Yb, a significant brittle-ductile transition is observed. These transitions correlate closely with the bonding characteristics modulated by atomic number or pressure conditions. For instance, as the atomic number increases, the Cauchy pressure (C12 - C44) decreases with the variation of s/d valence electron counts, indicating an enhanced covalent bonding tendency. Furthermore, the study reveals that simulations treating f-electrons as core electrons can adequately describe the elastic properties and trends of rare earth metals under ambient pressure. However, when modeling high-pressure structural phase transitions and their associated elastic evolution, approaches that treat f-electrons as valence electrons with explicit electronic correlation corrections demonstrate better accuracy.This dataset is publicly available and can be accessed via the Science Data Bank at https://www.scidb.cn/s/IBnuQz.
-
[1] McMahan A K, Huscroft C, Scalettar R T, Pollock E L 1998 J. Comput. Aid Mol. Des. 5 131
[2] Grimvall G 1999 Thermophysical Properties of Materials (Amsterdam: Elsevier).
[3] Jia T, Chen G, Zhang Y 2017 Phys. Rev. B 95 155206
[4] Li W, Kou H, Zhang X, Ma J, Li Y, Geng P, Wu X, Chen L, Fang D 2019 Mech. Mater. 139 103194
[5] Pugh S 1954 Philos. Mag. 45 823
[6] Xu L, Li X, He Q, Yang J, Sun S, Li J, Hu J, Wu Q 2025 J. Appl. Phys. 137 015902
[7] Xie M, Li F 2022 Advances in Mechanics, 52 33(谢明宇, 李法新 2022 力学进展 52 33)
[8] Kittel C 1996 Introduction to Solid State Physics (New York:Wiley).
[9] Boguslavskii Y Y, Goncharov V A, Il'ina G G 1989 J. Less-Common Met. 147 249
[10] Jeong I K, Darling T W, Graf M J, Proffen T, Heffner R H, Lee Y, Vogt T, Jorgensen J D 2004 Phys. Rev. Lett. 92 105702
[11] Decremps F, Antonangeli D, Amadon B, Schmerber G 2009 Phys. Rev. B 80
[12] Wang Z, Bi Y, Xu L, Liu L 2014 Mater. Res., 1 026501
[13] Lipp M J, Jackson D, Cynn H, Aracne C, Evans W J, Mcmahan A K 2008 Phys. Rev. Lett. 101 165703
[14] Lipp M J, Jenei Z, Cynn H, Kono Y, Park C, Kenney-Benson C, Evans W J 2017 Nat. Commun. 8 1198
[15] Xu L, Wang Z, Li Z, Li X, Yao S, Li J, Zhou X, Yu Y, Hu J, Wu Q 2021 Appl. Phys. Lett. 118 074102
[16] Söderlind P, Turchi P E A, Landa A, Lordi V 2014 J. Phys.: Condens. Matter. 26 416001
[17] Hill R 1952, Proc. Phys. Soc. A 65 349
[18] Yang Z, Xian J, Gao X, Tian F, Song H 2024 J. Chem. Phys. 161, 194101
[19] Blöchl P E, 1994 Phys Rev B Condens Matter. 50 17953
[20] Perdew J P, Burke K, Ernzerhof M, 1996 Phys. Rev. Lett. 77, 3865
[21] Delin A, Fast L, Johansson B, Eriksson O, Wills J M, 1998 Phys. Rev. B 58, 4345
[22] Ouyang Y F, Tao X M, Zeng F J, Chen H M, Du Y, Feng Y P, He Y 2009 Phys. B 404 2299
[23] Seitz F, Turnbull D 1964 Solid State Physics: Advance in Research and Applications (New York:Academic press)
[24] Material Properties, https://material-properties.org [2025-03-19]
[25] Pettifor D G 1992 Mater. Sci. Tech. 8 345
[26] Eberhart M E, Jones T E 2012 Phys. Rev. B 86 134106
[27] PubChem Kim S, Chen J, Cheng T, et al. 2025 update. Nucleic Acids Res. 2025;53(D1):D1516-D1525. https://pubchem.ncbi.nlm.nih.gov/ [2025-03-19]
[28] Gurtin M E, Fried E, Anand L (2010) The Mechanics and Thermodynamics of Continua. (Cambridge: Cambridge University Press)
[29] Stassis C, Gould T, McMasters O D, Gschneidner K A, Nicklow R M, 1979 Phys. Rev. B 19 5746
[30] Nikolaev A V and Tsvyashchenko A V, 2012 Phys.-Usp. 55 657
[31] Chen J L, Kaltsoyannis N, 2022 J. Phys. Chem. C 126 11426
[32] Eryigit S, Parlak C, Eryigit R 2022 J. Phys.: Condens. Matter 34 295402
[33] Tran F, Karsai F, Blaha P 2014 Phys. Rev. B 89 155106
[34] Voronov F F, Goncharova V A, Stal'gorova O V. 1979 J. Exp. Theor. Phys. 49 687
[35] Chesnut G N, Vohra Y K 1999 Phys. Rev. Lett, 82 1712
[36] Morée J-B, Amadon B 2018 Phys. Rev. B 98 205101
[37] Satikunvar D D, Bhatt N K, Thakore B Y, 2021 J. Appl. Phys.,129, 035107
[38]
计量
- 文章访问数: 151
- PDF下载量: 5
- 被引次数: 0