Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in the far-field sub-diffraction limit focusing and super-resolution imaging by planar metalenses

Qin Fei Hong Ming-Hui Cao Yao-Yu Li Xiang-Ping

Citation:

Advances in the far-field sub-diffraction limit focusing and super-resolution imaging by planar metalenses

Qin Fei, Hong Ming-Hui, Cao Yao-Yu, Li Xiang-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to the fundamental laws of wave optics, the spatial resolution of traditional optical microscopy is limited by the Rayleigh criterion. Enormous efforts have been made in the past decades to break through the diffraction limit barrier and in depth understand the dynamic processes and static properties. A growing array of super-resolution techniques by distinct approaches have been invented, which can be assigned to two categories: near-field and far-field super-resolution techniques. The near-field techniques, including near-field scanning optical microscopy, superlens, hyperlens, etc., could break through the diffraction limit and realize super-resolution imaging by collecting and modulating the evanescent wave. However, near-field technique suffers a limitation of very short working distances because of the confined propagation distance of evanescent wave, and certainly produces a mechanical damage to the specimen. The super-resolution fluorescence microscopy methods, such as STED, STORM, PALM, etc., could successfully surpass the diffractive limit in far field by selectively activating or deactivating fluorophores rooted in the nonlinear response to excitation light. But those techniques heavily rely on the properties of the fluorophores, and the labelling process makes them only suitable for narrow class samples. Developing a novel approach which could break through the diffraction limit in far field without any near-field operation or labelling processes is of significance for not only scientific research but also industrial production. Recently, the planar metalenses emerge as a promising approach, owing to the theoretical innovation, flexible design, and merits of high efficiency, integratable and so forth. In this review, the most recent progress of planar metalenses is briefly summarized in the aspects of sub-diffractive limit focusing and super-resolution imaging. In addition, the challenge to transforming this academic concept into practical applications, and the future development in the field of planar metalenses are also discussed briefly.
      Corresponding author: Hong Ming-Hui, elehmh@nus.edu.sg;xiangpingli@jnu.edu.cn ; Li Xiang-Ping, elehmh@nus.edu.sg;xiangpingli@jnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61522504).
    [1]

    Airy G B 1835 Trans. Cambridge Phil. Soc. 5 283

    [2]

    Rayleigh L 1874 Philos. Mag. Ser. 47 81

    [3]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [4]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [5]

    Zhang X, Liu Z 2008 Nat. Mater. 7 435

    [6]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [7]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205

    [8]

    Jacob Z, Alekseyev L V, Narimanov E 2006 Opt. Express 14 8247

    [9]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [10]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [11]

    Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [12]

    Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W 2006 Nature 440 935

    [13]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915

    [14]

    Shroff H, Galbraith C G, Galbraith J A, Betzig E 2008 Nat. Methods 5 417

    [15]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417

    [16]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749

    [17]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [18]

    Yan Y, Li L, Feng C, Guo W, Lee S, Hong M 2014 ACS Nano 8 1809

    [19]

    Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [20]

    Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905

    [21]

    Xie X, Chen Y, Yang K, Zhou J 2014 Phys. Rev. Lett. 113 263901

    [22]

    Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, Li Y, Ge J, Liu X 2013 Light Sci. Appl. 2 e108

    [23]

    Francia G T 1952 Nuovo Cimento. Suppl. 9 426

    [24]

    Li X, Venugopalan P, Ren H, Hong M, Gu M 2014 Opt. Lett. 39 5961

    [25]

    Li X, Cao Y, Gu M 2011 Opt. Lett. 36 2510

    [26]

    Chen X, Huang L, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T 2012 Nature Commun. 3 1198

    [27]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190

    [28]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl. 2 e72

    [29]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298

    [30]

    Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P, Luo X 2015 Sci. Rep. 5 18485

    [31]

    Qin F, Huang K, Wu J, Teng J, Qiu C W, Hong M 2017 Adv. Mater. 29 1602721

    [32]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N I 2013 Appl. Phys. Lett. 102 031108

    [33]

    Wang J, Qin F, Zhang D H, Li D, Wang Y, Shen X, Yu T, Teng J 2013 Appl. Phys. Lett. 102 061103

    [34]

    Huang K, Ye H, Teng J, Yeo S P, Luk'yanchuk B, Qiu C 2014 Laser Photon. Rev. 8 152

    [35]

    Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zheludev N I 2012 Nat. Mater. 11 432

    [36]

    Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C, Hong M 2015 Sci. Rep. 5 9977

    [37]

    Yuan G, Rogers E T, Roy T, Adamo G, Shen Z, Zheludev N I 2014 Sci. Rep. 4 6333

    [38]

    Qin F, Hong M 2017 Sci. China: Phys. Mech. 60 044231

    [39]

    Chao W, Harteneck B D, Liddle J A, Anderson E H, Attwood D T 2005 Nature 435 1210

    [40]

    Zheng R, Jiang L, Feldman M 2006 J. Vac. Sci. Technol. B 24 2844

    [41]

    Chen G, Zhang K, Yu A, Wang X, Zhang Z, Li Y, Wen Z, Li C, Dai L, Jiang S, Lin F 2016 Opt. Express 24 11002

    [42]

    Ye H, Qiu C W, Huang K, Teng J, Luk'yanchuk B, Yeo S P 2013 Laser Phys. Lett. 10 065004

    [43]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351

    [44]

    Berry M V, Popescu S 2006 J. Phys. A 39 6965

    [45]

    Berry M V 2013 J. Phys. A 46 205203

    [46]

    Huang F M, Chen Y, Garcia de Abajo F J, Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 S285

    [47]

    Huang F M, Zheludev N, Chen Y, Garcia de Abajo F J 2007 Appl. Phys. Lett. 90 091119

    [48]

    Huang F M, Kao T S, Fedotov V A, Chen Y, Zheludev N I 2008 Nano Lett. 8 2469

    [49]

    Huang F M, Zheludev N I 2009 Nano Lett. 9 1249

    [50]

    Martınez-Corral M, Andres P, Zapata-Rodrıguez C J, Kowalczyk M 1999 Opt. Commun. 165 267

    [51]

    Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photon. 2 501

    [52]

    Liu T, Shen T, Yang S, Jiang Z 2015 J. Opt. 17 035610

    [53]

    Davis B J, Karl W C, Swan A K, Unlu M S, Goldberg B B 2004 Opt. Express 12 4150

    [54]

    Liu T, Tan J, Liu J 2010 Opt. Express 18 2822

    [55]

    Tian B, Pu J 2011 Opt. Lett. 36 2014

    [56]

    Liu T, Tan J, Liu J, Lin J 2013 J. Mod. Opt. 60 378

    [57]

    Rogers E T F, Zheludev N I 2013 J. Opt. 15 094008

    [58]

    Roy T, Rogers E T F, Zheludev N I 2013 Opt. Express 21 7577

    [59]

    Roy T, Rogers E T F, Yuan G, Zheludev N I 2014 Appl. Phys. Lett. 104 231109

    [60]

    Yuan G, Rogers E T, Roy T, Shen Z, Zheludev N I 2014 Opt. Express 22 6428

    [61]

    Yuan G, Vezzoli S, Altuzarra C, Rogers E T, Couteau C, Soci C, Zheludev N I 2016 Light Sci. Appl. 5 e16127

    [62]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G, Teng J, Zheludev N I 2015 Nat. Photon. 10 60

    [63]

    Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M 2015 Nat. Commun. 6 8433

    [64]

    Yuan G, Rogers E T, Zheludev N I 2017 Light Sci. Appl. (In Press) doi: 101038/lsa.201736

    [65]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [66]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [67]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807

    [68]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308

    [69]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818

    [70]

    Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J, Luk'yanchuk B, Yang J K W, Qiu C W 2016 Laser Photon. Rev. 10 500

    [71]

    Qin F, Ding L, Zhang L, Monticone F, Chum C C, Deng J, Mei S, Li Y, Teng J, Hong M, Zhang S, Al A, Qiu C W 2016 Sci. Adv. 2 e1501168

    [72]

    Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H, Wang H C, Chen T Y, Hsieh W T, Wu H J, Sun G, Tsai D P 2016 Laser Photon. Rev. 10 986

    [73]

    Wu P C, Tsai W Y, Chen W T, Huang Y W, Chen T Y, Chen J W, Liao C Y, Chu C H, Sun G, Tsai D P 2017 Nano Lett. 17 445

    [74]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photon. Rev. 9 713

    [75]

    Luo X 2015 Sci. China: Phys. Mech. 58 594201

    [76]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229

    [77]

    Khorasaninejad M, Chen W T, Zhu A Y, Oh J, Devlin R C, Rousso D, Capasso F 2016 Nano Lett. 16 4595

    [78]

    Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun. 6 7069

    [79]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 13682

  • [1]

    Airy G B 1835 Trans. Cambridge Phil. Soc. 5 283

    [2]

    Rayleigh L 1874 Philos. Mag. Ser. 47 81

    [3]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [4]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [5]

    Zhang X, Liu Z 2008 Nat. Mater. 7 435

    [6]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [7]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205

    [8]

    Jacob Z, Alekseyev L V, Narimanov E 2006 Opt. Express 14 8247

    [9]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [10]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [11]

    Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [12]

    Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W 2006 Nature 440 935

    [13]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915

    [14]

    Shroff H, Galbraith C G, Galbraith J A, Betzig E 2008 Nat. Methods 5 417

    [15]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417

    [16]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749

    [17]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [18]

    Yan Y, Li L, Feng C, Guo W, Lee S, Hong M 2014 ACS Nano 8 1809

    [19]

    Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [20]

    Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905

    [21]

    Xie X, Chen Y, Yang K, Zhou J 2014 Phys. Rev. Lett. 113 263901

    [22]

    Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, Li Y, Ge J, Liu X 2013 Light Sci. Appl. 2 e108

    [23]

    Francia G T 1952 Nuovo Cimento. Suppl. 9 426

    [24]

    Li X, Venugopalan P, Ren H, Hong M, Gu M 2014 Opt. Lett. 39 5961

    [25]

    Li X, Cao Y, Gu M 2011 Opt. Lett. 36 2510

    [26]

    Chen X, Huang L, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T 2012 Nature Commun. 3 1198

    [27]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190

    [28]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl. 2 e72

    [29]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298

    [30]

    Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P, Luo X 2015 Sci. Rep. 5 18485

    [31]

    Qin F, Huang K, Wu J, Teng J, Qiu C W, Hong M 2017 Adv. Mater. 29 1602721

    [32]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N I 2013 Appl. Phys. Lett. 102 031108

    [33]

    Wang J, Qin F, Zhang D H, Li D, Wang Y, Shen X, Yu T, Teng J 2013 Appl. Phys. Lett. 102 061103

    [34]

    Huang K, Ye H, Teng J, Yeo S P, Luk'yanchuk B, Qiu C 2014 Laser Photon. Rev. 8 152

    [35]

    Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zheludev N I 2012 Nat. Mater. 11 432

    [36]

    Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C, Hong M 2015 Sci. Rep. 5 9977

    [37]

    Yuan G, Rogers E T, Roy T, Adamo G, Shen Z, Zheludev N I 2014 Sci. Rep. 4 6333

    [38]

    Qin F, Hong M 2017 Sci. China: Phys. Mech. 60 044231

    [39]

    Chao W, Harteneck B D, Liddle J A, Anderson E H, Attwood D T 2005 Nature 435 1210

    [40]

    Zheng R, Jiang L, Feldman M 2006 J. Vac. Sci. Technol. B 24 2844

    [41]

    Chen G, Zhang K, Yu A, Wang X, Zhang Z, Li Y, Wen Z, Li C, Dai L, Jiang S, Lin F 2016 Opt. Express 24 11002

    [42]

    Ye H, Qiu C W, Huang K, Teng J, Luk'yanchuk B, Yeo S P 2013 Laser Phys. Lett. 10 065004

    [43]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351

    [44]

    Berry M V, Popescu S 2006 J. Phys. A 39 6965

    [45]

    Berry M V 2013 J. Phys. A 46 205203

    [46]

    Huang F M, Chen Y, Garcia de Abajo F J, Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 S285

    [47]

    Huang F M, Zheludev N, Chen Y, Garcia de Abajo F J 2007 Appl. Phys. Lett. 90 091119

    [48]

    Huang F M, Kao T S, Fedotov V A, Chen Y, Zheludev N I 2008 Nano Lett. 8 2469

    [49]

    Huang F M, Zheludev N I 2009 Nano Lett. 9 1249

    [50]

    Martınez-Corral M, Andres P, Zapata-Rodrıguez C J, Kowalczyk M 1999 Opt. Commun. 165 267

    [51]

    Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photon. 2 501

    [52]

    Liu T, Shen T, Yang S, Jiang Z 2015 J. Opt. 17 035610

    [53]

    Davis B J, Karl W C, Swan A K, Unlu M S, Goldberg B B 2004 Opt. Express 12 4150

    [54]

    Liu T, Tan J, Liu J 2010 Opt. Express 18 2822

    [55]

    Tian B, Pu J 2011 Opt. Lett. 36 2014

    [56]

    Liu T, Tan J, Liu J, Lin J 2013 J. Mod. Opt. 60 378

    [57]

    Rogers E T F, Zheludev N I 2013 J. Opt. 15 094008

    [58]

    Roy T, Rogers E T F, Zheludev N I 2013 Opt. Express 21 7577

    [59]

    Roy T, Rogers E T F, Yuan G, Zheludev N I 2014 Appl. Phys. Lett. 104 231109

    [60]

    Yuan G, Rogers E T, Roy T, Shen Z, Zheludev N I 2014 Opt. Express 22 6428

    [61]

    Yuan G, Vezzoli S, Altuzarra C, Rogers E T, Couteau C, Soci C, Zheludev N I 2016 Light Sci. Appl. 5 e16127

    [62]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G, Teng J, Zheludev N I 2015 Nat. Photon. 10 60

    [63]

    Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M 2015 Nat. Commun. 6 8433

    [64]

    Yuan G, Rogers E T, Zheludev N I 2017 Light Sci. Appl. (In Press) doi: 101038/lsa.201736

    [65]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [66]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [67]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807

    [68]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308

    [69]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818

    [70]

    Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J, Luk'yanchuk B, Yang J K W, Qiu C W 2016 Laser Photon. Rev. 10 500

    [71]

    Qin F, Ding L, Zhang L, Monticone F, Chum C C, Deng J, Mei S, Li Y, Teng J, Hong M, Zhang S, Al A, Qiu C W 2016 Sci. Adv. 2 e1501168

    [72]

    Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H, Wang H C, Chen T Y, Hsieh W T, Wu H J, Sun G, Tsai D P 2016 Laser Photon. Rev. 10 986

    [73]

    Wu P C, Tsai W Y, Chen W T, Huang Y W, Chen T Y, Chen J W, Liao C Y, Chu C H, Sun G, Tsai D P 2017 Nano Lett. 17 445

    [74]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photon. Rev. 9 713

    [75]

    Luo X 2015 Sci. China: Phys. Mech. 58 594201

    [76]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229

    [77]

    Khorasaninejad M, Chen W T, Zhu A Y, Oh J, Devlin R C, Rousso D, Capasso F 2016 Nano Lett. 16 4595

    [78]

    Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun. 6 7069

    [79]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 13682

  • [1] Luo Ze-Wei, Wu Ge, Chen Zhi, Deng Chi-Nan, Wan Rong, Yang Tao, Zhuang Zheng-Fei, Chen Tong-Sheng. Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging. Acta Physica Sinica, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [2] Gu Tong-Kai, Wang Lan-Lan, Guo Yang, Jiang Wei-Tao, Shi Yong-Sheng, Yang Shuo, Chen Jin-Ju, Liu Hong-Zhong. Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk. Acta Physica Sinica, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [3] Wang Jia-Lin, Yan Wei, Zhang Jia, Wang Lu-Wei, Yang Zhi-Gang, Qu Jun-Le. New advances in the research of stimulated emission depletion super-resolution microscopy. Acta Physica Sinica, 2020, 69(10): 108702. doi: 10.7498/aps.69.20200168
    [4] Liu Kang, He Tao, Liu Tao, Li Guo-Qing, Tian Bo, Wang Jia-Yi, Yang Shu-Ming. Effect of laser illumination conditions on focusing performance of super-oscillatory lens. Acta Physica Sinica, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] Fan Qi-Meng, Yin Cheng-You. Super-resolution imaging of high-contrast target in elctromagnetic inverse scattering. Acta Physica Sinica, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [6] Zhao Tian-Yu, Zhou Xing, Dan Dan, Qian Jia, Wang Zhao-Jun, Lei Ming, Yao Bao-Li. Polarization control methods in structured illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [7] Li Shao-Dong, Chen Yong-Bin, Liu Run-Hua, Ma Xiao-Yan. Analysis on the compressive sensing based narrow-band radar super resolution imaging mechanism of rapidly spinning targets. Acta Physica Sinica, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [8] Zhao Guang-Yuan, Zheng Cheng, Fang Yue, Kuang Cui-Fang, Liu Xu. Progress of point-wise scanning superresolution methods. Acta Physica Sinica, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [9] Chen Gang, Wen Zhong-Quan, Wu Zhi-Xiang. Optical super-oscillation and super-oscillatory optical devices. Acta Physica Sinica, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205
    [10] Hu Rui-Xuan, Pan Bing-Yang, Yang Yu-Long, Zhang Wei-Hua. Brief retrospect of super-resolution optical microscopy techniques. Acta Physica Sinica, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [11] Gao Si, Wang Zi-Han, Hua Jian-Guan, Li Qian-Kun, Li Ai-Wu, Yu Yan-Hao. Sub-diffraction-limit fabrication of sapphire by femtosecond laser direct writing. Acta Physica Sinica, 2017, 66(14): 147901. doi: 10.7498/aps.66.147901
    [12] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [13] Li Shao-Dong, Chen Wen-Feng, Yang Jun, Ma Xiao-Yan. A fast two dimensional joint linearized bregman iteration algorithm for super-resolution inverse synthetic aperture radar imaging at low signal-to-noise ratios. Acta Physica Sinica, 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [14] Chen Li-Cheng, Zhang Dong-Xian, Zhang Hai-Jun, Wang Xu-Long-Qi. Color tuning based on micro-nano structure and metal nanolayer. Acta Physica Sinica, 2015, 64(3): 038102. doi: 10.7498/aps.64.038102
    [15] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] Zhi Shao-Tao, Zhang Hai-Jun, Zhang Dong-Xian. Super-resolution optical microscopic imaging method based on annular illumination with high numerical aperture. Acta Physica Sinica, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [17] Lu Jing, Li Hao, He Yi, Shi Guo-Hua, Zhang Yu-Dong. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [18] Sun Jin-Xia, Sun Qiang, Li Dong-Xi, Lu Zhen-Wu. Conformal dome aberration correction with diffractive elements. Acta Physica Sinica, 2007, 56(7): 3900-3905. doi: 10.7498/aps.56.3900
    [19] Liu Shi-Jie, Shen Jian, Shen Zi-Cai, Kong Wei-Jin, Wei Chao-Yang, Jin Yun-Xia, Shao Jian-Da, Fan Zheng-Xiu. Near-field optical property of multi-layer dielectric gratings for pulse compressor. Acta Physica Sinica, 2006, 55(9): 4588-4594. doi: 10.7498/aps.55.4588
    [20] Zhao Wei-Qian, Chen Shan-Shan, Feng Zheng-De. A confocal measurement method based on superresolution image restoration and shaped annular beam. Acta Physica Sinica, 2006, 55(7): 3363-3367. doi: 10.7498/aps.55.3363
Metrics
  • Abstract views:  10893
  • PDF Downloads:  1094
  • Cited By: 0
Publishing process
  • Received Date:  09 May 2017
  • Accepted Date:  31 May 2017
  • Published Online:  05 July 2017

/

返回文章
返回
Baidu
map