-
The microlens-assisted microscope realizes super-resolution imaging and observation, and has the advantages of no marking, no damage, real-time, localization, and good environmental compatibility. Liquid microlens arrays with uniformity and easy manipulation can realize super-resolution imaging without complicated mechanical scanning and driving. However, simply and efficiently controlling the imaging distance is a key technical challenge to the realization of super-resolution imaging of microlens. In this paper, the uniform depths of photoresist microholes on light disk are fabricated by ultraviolet exposure technology. Using liquid self-assembly technology, the microholes are filled with glycerol droplets, and thus ensuring the near-field imaging distance of the microlens. The reconfigurable super-resolution of 226-nm-wide grating line and the imaging magnification of 1.59 times are observed under the optical microscope. At present, the theory of super-resolution imaging based on microlens is not unified and perfect. In this paper, the Abbe imaging principle is used to explain the imaging magnification and super-resolution characteristics. Therefore, the liquid microlens arrays integrated on the light disk show great potential application in optical nanometer measurements and sensing devices.
-
Keywords:
- liquid microlens arrays /
- super resolution /
- imaging magnification /
- Abbe imaging.
[1] Ling J Z, Wang Y C, Liu X, Wang X R 2021 Opt. Lett. 46 1265Google Scholar
[2] Chen L W, Zhou Y, Li Y, Hong M H 2019 Appl. Phys. Rev. 6 021304Google Scholar
[3] Hüser L, Pahl T, Künne M, Lehmann P 2022 J. Opt. Microsyst. 2 044501Google Scholar
[4] Wang Z B, Guo W, Li L, Luk'yanchuk B S, Khan A, Liu Z, Chun Z C, Hong M H 2011 Nat. Commun. 2 218Google Scholar
[5] 周锐, 吴梦雪, 沈飞, 洪明辉 2017 66 140702Google Scholar
Zhou R, Wu M X, Shen F, Hong M H 2017 Acta Phys. Sin. 66 140702Google Scholar
[6] 宋扬, 杨西斌, 闫冰, 王驰, 孙建美, 熊大曦 2020 69 134201Google Scholar
Song Y, Yang X B, Yan B, Wang C, Sun J M, Xiong D X 2020 Acta Phys. Sin. 69 134201Google Scholar
[7] 王建国, 杨松林, 叶永红 2018 67 214209Google Scholar
Wang J G, Yang S L, Ye Y H 2018 Acta Phys. Sin. 67 214209Google Scholar
[8] Darafsheh A 2022 J. Appl. Phys. 131 031102Google Scholar
[9] Pei Y, Zang J J, Yang S L, Wang J G, Cao Y Y, Ye Y H 2021 ACS Appl. Nano Mater. 4 11281Google Scholar
[10] Yang S L, Ye Y H, Shi Q F, Zhang J Y 2020 J. Phys. Chem. C 124 25951Google Scholar
[11] Gu G Q, Zhang P C, Chen S H, Zhang Y, Yang H 2021 Photonics. Res. 9 1157Google Scholar
[12] Zhang P P, Yan B, Gu G Q, Yu Z T, Chen X, Wang Z B, Yang H 2022 Sensor. Actuat. B-Chem. 357 131401Google Scholar
[13] Kwon S, Park J, Kim K, Cho Y, Lee M 2022 Light Sci. Appl. 11 32Google Scholar
[14] Gu G Q, Song J, Ming C, Xiao P, Liang H D, Qu J L 2018 Nanoscale 10 14182Google Scholar
[15] Xie Y, Cai D, Pan J, Zhou N, Guo X, Wang P, Tong L 2022 Adv. Opt. Mater. 10 2102269Google Scholar
[16] Su S J, Liang J S, Li X J, Xin W W, Chen L, Yin P H, Wang Z Z, Ye X S, Xiao J P, Wang D 2021 Adv. Mater. Technol-US. 6 2100449Google Scholar
[17] Darafsheh A 2021 J. Phys. Photonics. 3 022001Google Scholar
[18] Wang F F, Liu L Q, Yu H B, Wen Y D, Yu P, Liu Z, Wang Y C, Li W J 2016 Nat. Commun. 7 13748Google Scholar
[19] Wang S Y, Zhang D X, Zhang H J, Han X, Xu R 2015 Microsc. Res. Techniq. 78 1128Google Scholar
[20] Zhang T Y, Yu H B, Li P, Wang X D, Wang F F, Shi J L, Liu Z, Yu P, Yang W G, Wang Y C, Liu L Q 2020 ACS Appl. Mater. Inter. 12 48093Google Scholar
[21] Chen X X, Wu T L, Gong Z Y, Guo J H, Liu X S, Zhang Y, Li Y C, Ferraro P, Li B J 2021 Light Sci. Appl. 12 242Google Scholar
[22] 李姮, 张熙熙, 张垚, 李宇超, 李宝军 2022 光学学报 42 0411003Google Scholar
Li H, Chen X X, Zhang Y, Li Y C, Li B J 2022 Acta. Opt. Sin. 42 0411003Google Scholar
[23] Jia B L, Wang F F, Chan H Y, Zhang G L, Li W J 2019 Microsyst. Nanoeng. 5 13Google Scholar
[24] Gu T K, Wang L L, Li R, Dong Y Z, Zhang Y J, Jia M C, Jiang W T, Liu H Z 2018 Opt. Commun. 428 89Google Scholar
[25] Zhang H C, Qi T Y, Zhu X Y, Zhou L J, Li Z H, Zhang Y F, Yang W C, Yang J J, Peng Z L, Zhang G M, Wang F, Guo P F, Lan H B 2021 ACS Appl. Mater. Inter. 13 36295Google Scholar
[26] Wang L, Luo Y, Liu Z Z, Feng X M, Lu B H 2018 Appl. Surf. Sci. 442 417Google Scholar
[27] Wang L L, Liu H Z, Jiang W T, Li R, Li F, Yang Z B, Yin L, Shi Y S, Chen B D 2015 J. Mater. Chem. C 3 5896Google Scholar
[28] Wang L L, Li F, Liu H Z, Jiang W T, Niu D, Li R, Yin L, Shi Y S, Chen B D 2015 ACS Appl. Mater. Inter. 7 21416Google Scholar
[29] Xu M, Zhou Z W, Wang Z, Lu H B 2020 ACS Appl. Mater. Inter. 12 7826Google Scholar
[30] Chen X X, Wu T L, Gong Z Y, Li Y C, Zhang Y, Li B J 2020 Photonics. Res. 8 225Google Scholar
[31] Yang H, Trouillon R, Huszka G, Gijs M A 2016 Nano. Lett. 16 4862Google Scholar
[32] 叶燃, 许楚, 汤芬, 尚晴晴, 范瑶, 李加基, 叶永红, 左超 2022 红外与激光工程 51 20220086Google Scholar
Ye R, Xu C, Tang F, Shang Q Q, Fan Y, Li J J, Ye Y H, Zuo C 2022 Infrared Laser Eng. 51 20220086Google Scholar
[33] Duan Y, Barbastathis G, Zhang B 2013 Opt. Lett. 38 2988Google Scholar
[34] Zhou S, Deng Y B, Zhou W C, Yu M X, Urbach H P, Wu Y H 2017 Appl. Phys. B 123 236Google Scholar
-
图 4 液体自组装前后模板的共聚焦扫描结果 (a) 微孔阵列; (b)微孔轮廓和结构参数; (c)微透镜阵列; (d) 微透镜轮廓和结构参数
Figure 4. Observation of template before and after liquid self-assembly process through CLSM: (a) Microhole arrays; (b) profile and parameters of microholes; (c) liquid microlens arrays (LMLAs); (d) profile and parameters of microlenses.
-
[1] Ling J Z, Wang Y C, Liu X, Wang X R 2021 Opt. Lett. 46 1265Google Scholar
[2] Chen L W, Zhou Y, Li Y, Hong M H 2019 Appl. Phys. Rev. 6 021304Google Scholar
[3] Hüser L, Pahl T, Künne M, Lehmann P 2022 J. Opt. Microsyst. 2 044501Google Scholar
[4] Wang Z B, Guo W, Li L, Luk'yanchuk B S, Khan A, Liu Z, Chun Z C, Hong M H 2011 Nat. Commun. 2 218Google Scholar
[5] 周锐, 吴梦雪, 沈飞, 洪明辉 2017 66 140702Google Scholar
Zhou R, Wu M X, Shen F, Hong M H 2017 Acta Phys. Sin. 66 140702Google Scholar
[6] 宋扬, 杨西斌, 闫冰, 王驰, 孙建美, 熊大曦 2020 69 134201Google Scholar
Song Y, Yang X B, Yan B, Wang C, Sun J M, Xiong D X 2020 Acta Phys. Sin. 69 134201Google Scholar
[7] 王建国, 杨松林, 叶永红 2018 67 214209Google Scholar
Wang J G, Yang S L, Ye Y H 2018 Acta Phys. Sin. 67 214209Google Scholar
[8] Darafsheh A 2022 J. Appl. Phys. 131 031102Google Scholar
[9] Pei Y, Zang J J, Yang S L, Wang J G, Cao Y Y, Ye Y H 2021 ACS Appl. Nano Mater. 4 11281Google Scholar
[10] Yang S L, Ye Y H, Shi Q F, Zhang J Y 2020 J. Phys. Chem. C 124 25951Google Scholar
[11] Gu G Q, Zhang P C, Chen S H, Zhang Y, Yang H 2021 Photonics. Res. 9 1157Google Scholar
[12] Zhang P P, Yan B, Gu G Q, Yu Z T, Chen X, Wang Z B, Yang H 2022 Sensor. Actuat. B-Chem. 357 131401Google Scholar
[13] Kwon S, Park J, Kim K, Cho Y, Lee M 2022 Light Sci. Appl. 11 32Google Scholar
[14] Gu G Q, Song J, Ming C, Xiao P, Liang H D, Qu J L 2018 Nanoscale 10 14182Google Scholar
[15] Xie Y, Cai D, Pan J, Zhou N, Guo X, Wang P, Tong L 2022 Adv. Opt. Mater. 10 2102269Google Scholar
[16] Su S J, Liang J S, Li X J, Xin W W, Chen L, Yin P H, Wang Z Z, Ye X S, Xiao J P, Wang D 2021 Adv. Mater. Technol-US. 6 2100449Google Scholar
[17] Darafsheh A 2021 J. Phys. Photonics. 3 022001Google Scholar
[18] Wang F F, Liu L Q, Yu H B, Wen Y D, Yu P, Liu Z, Wang Y C, Li W J 2016 Nat. Commun. 7 13748Google Scholar
[19] Wang S Y, Zhang D X, Zhang H J, Han X, Xu R 2015 Microsc. Res. Techniq. 78 1128Google Scholar
[20] Zhang T Y, Yu H B, Li P, Wang X D, Wang F F, Shi J L, Liu Z, Yu P, Yang W G, Wang Y C, Liu L Q 2020 ACS Appl. Mater. Inter. 12 48093Google Scholar
[21] Chen X X, Wu T L, Gong Z Y, Guo J H, Liu X S, Zhang Y, Li Y C, Ferraro P, Li B J 2021 Light Sci. Appl. 12 242Google Scholar
[22] 李姮, 张熙熙, 张垚, 李宇超, 李宝军 2022 光学学报 42 0411003Google Scholar
Li H, Chen X X, Zhang Y, Li Y C, Li B J 2022 Acta. Opt. Sin. 42 0411003Google Scholar
[23] Jia B L, Wang F F, Chan H Y, Zhang G L, Li W J 2019 Microsyst. Nanoeng. 5 13Google Scholar
[24] Gu T K, Wang L L, Li R, Dong Y Z, Zhang Y J, Jia M C, Jiang W T, Liu H Z 2018 Opt. Commun. 428 89Google Scholar
[25] Zhang H C, Qi T Y, Zhu X Y, Zhou L J, Li Z H, Zhang Y F, Yang W C, Yang J J, Peng Z L, Zhang G M, Wang F, Guo P F, Lan H B 2021 ACS Appl. Mater. Inter. 13 36295Google Scholar
[26] Wang L, Luo Y, Liu Z Z, Feng X M, Lu B H 2018 Appl. Surf. Sci. 442 417Google Scholar
[27] Wang L L, Liu H Z, Jiang W T, Li R, Li F, Yang Z B, Yin L, Shi Y S, Chen B D 2015 J. Mater. Chem. C 3 5896Google Scholar
[28] Wang L L, Li F, Liu H Z, Jiang W T, Niu D, Li R, Yin L, Shi Y S, Chen B D 2015 ACS Appl. Mater. Inter. 7 21416Google Scholar
[29] Xu M, Zhou Z W, Wang Z, Lu H B 2020 ACS Appl. Mater. Inter. 12 7826Google Scholar
[30] Chen X X, Wu T L, Gong Z Y, Li Y C, Zhang Y, Li B J 2020 Photonics. Res. 8 225Google Scholar
[31] Yang H, Trouillon R, Huszka G, Gijs M A 2016 Nano. Lett. 16 4862Google Scholar
[32] 叶燃, 许楚, 汤芬, 尚晴晴, 范瑶, 李加基, 叶永红, 左超 2022 红外与激光工程 51 20220086Google Scholar
Ye R, Xu C, Tang F, Shang Q Q, Fan Y, Li J J, Ye Y H, Zuo C 2022 Infrared Laser Eng. 51 20220086Google Scholar
[33] Duan Y, Barbastathis G, Zhang B 2013 Opt. Lett. 38 2988Google Scholar
[34] Zhou S, Deng Y B, Zhou W C, Yu M X, Urbach H P, Wu Y H 2017 Appl. Phys. B 123 236Google Scholar
Catalog
Metrics
- Abstract views: 4120
- PDF Downloads: 121
- Cited By: 0