搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光照明条件对超振荡平面透镜聚焦性能的影响

刘康 何韬 刘涛 李国卿 田博 王佳怡 杨树明

引用本文:
Citation:

激光照明条件对超振荡平面透镜聚焦性能的影响

刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明

Effect of laser illumination conditions on focusing performance of super-oscillatory lens

Liu Kang, He Tao, Liu Tao, Li Guo-Qing, Tian Bo, Wang Jia-Yi, Yang Shu-Ming
PDF
HTML
导出引用
  • 超振荡平面透镜(super-oscillatory lens, SOL)是近几年出现的新型平面光学元件, 基于矢量角谱理论设计了振幅型和相位型SOL, 采用时域有限差分法对衍射聚焦光场进行严格电磁仿真计算, 研究发现: 当照明激光束腰半径w0小于SOL半径a时, 超衍射极限聚焦能力明显下降, 聚焦光斑强度衰减超过50%; 束腰半径w0对相位型SOL影响更剧烈, 且会发生显著正向焦移; 当w0不小于2a时可获得接近理想的聚焦特性. 倾斜照明条件下, 大数值孔径振幅型SOL一般允许的倾斜角度小于10°, 而相位型SOL具有宽广的倾角适应性(可超过40°), 聚焦光斑会发生横向展宽, 且强度急剧下降. 大数值孔径SOL对无限远点物成像会产生显著的负畸变和波动变化的场曲, 小数值孔径SOL在宽视场范围内则无畸变. 本文研究结果为SOL在超衍射极限聚焦、超分辨显微成像、飞秒激光直写微纳加工等领域的实际应用提供重要理论支撑.
    Super-oscillatory lens (SOL), a new type of planar optical element developed in recent years, may play an important role in the integrated optics, microscopy, advanced sensor, and astronomy. Based on the vectorial angular spectrum theory and genetic algorithm, both binary amplitude-type and phase-type SOLs are designed. Various sub-diffraction focusing properties can be realized by optimizing the design procedure. In order to investigate the focusing characteristics of SOLs under different illumination conditions, rigorous electromagnetic simulation calculations of the diffracted focusing light field are implemented by the finite-difference time-domain method. The results show that when the beam waist radius w0 of the illuminating laser is less than the SOL radius a, not only the capability of super-diffraction limit focusing will decrease significantly, but also the intensity of the focal spot will attenuate by more than 50%. Comparing with the amplitude-type SOL, the waist radius w0 has a strong effect on the phase-type SOL and causes a significant focus to shift in the positive direction. However, if w0 is larger than 2a, the ideal focusing characteristics of SOL can be maintained. Under the condition of oblique illumination, the high numerical aperture amplitude-type SOL generally only allows a small inclination angle of less than 10°, while the phase-type SOL has a wide inclination adaptability (can exceed 40°) regardless of the numerical aperture. For the latter, the focal spot will expand laterally and the intensity will decrease sharply with the increase of inclination angle. As for low numerical aperture phase-type SOL, the focusing characteristics, including focal spot size, focusing intensity and the angular position of the focus, can keep stable within an inclination angle of 18°. For imaging infinitely distant objects, the oblique illumination will produce a fluctuating field curvature and significant negative distortion for high numerical aperture SOLs, while for the low numerical aperture SOLs, the field curvature increases with inclination angle increasing and the distortion disappears almost. The research results of this paper provide an important theoretical basis for practical applications of super-oscillatory lens in the fields of sub-diffraction light focusing, super-resolution microscopic imaging, and micro-nano processing of femtosecond laser direct writing.
      通信作者: 刘涛, liu8483@xjtu.edu.cn ; 杨树明, shuming.yang@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金优秀青年科学基金(批准号: 51722509)、国家重点研发计划(批准号: 2017YFB1104700)和陕西省自然科学基础研究计划(批准号: 2020SF-170)资助的课题
      Corresponding author: Liu Tao, liu8483@xjtu.edu.cn ; Yang Shu-Ming, shuming.yang@mail.xjtu.edu.cn
    • Funds: Project supported by the Excellent Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51722509), the National Key R&D Program of China (Grant No. 2017YFB1104700), and the Natural Science Foundation for Basic Research of Shaanxi Province, China (Grant No. 2020SF-170)
    [1]

    Rogers E T F, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zhelidev N I 2012 Nat. Mater. 11 432Google Scholar

    [2]

    刘涛 2013 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu T 2013 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [3]

    Francia G T D 1952 IL Nuovo Cimento 9 426Google Scholar

    [4]

    邱丽荣 2005 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Qiu L R 2005 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [5]

    Diao J S, Yuan W Z, Yu Y T, Zhu Y C, Wu Y 2016 Opt. Express 24 1924Google Scholar

    [6]

    Wu J, Wu Z X, He Y G, Yu A P, Zhang Z H, Wen Z Q, Chen G 2017 Opt. Express 25 6274Google Scholar

    [7]

    Liu T, Tan J B, Liu J, Wang H T 2013 Opt. Lett. 38 2742Google Scholar

    [8]

    Liu T, Liu Q, Yang S M, Jiang Z D, Wang T, Zhang G F 2017 Appl. Opt. 56 3725Google Scholar

    [9]

    Liu T, Tan J B, Liu J, Wang H T 2013 Opt. Express 21 15090Google Scholar

    [10]

    Liu T, Shen T, Yang S M, Jiang Z D 2015 J. Opt. 17 035610Google Scholar

    [11]

    Liu T, Liu Q, Yang S M, Jiang Z D, Wang T, Yang X K 2017 Opt. Commun. 393 72Google Scholar

    [12]

    Yuan G H, Rogers Edward T F, Zheludev N I 2017 Light: Sci. Appl. 6 e17036Google Scholar

    [13]

    Qin F, Huang K, Wu J F, Teng J H, Qiu C W, Hong M H 2017 Adv. Mater. 29 1602721Google Scholar

    [14]

    武靖 2018 硕士学位论文 (重庆: 重庆大学)

    Wu J 2018 M. S. Thesis (Chongqing: Chongqing university) (in Chinese)

    [15]

    Nagarajan A, Stoevelaar L P, Silvestri F, et al. 2019 Opt. Express 27 20012Google Scholar

    [16]

    Liu T, Wang T, Yang S M, Sun L, Jiang Z D 2015 Opt. Express 23 32139Google Scholar

    [17]

    Yang S M, Wang T, Liu T, Jiang Z D 2016 Opt. Commun. 372 166Google Scholar

    [18]

    Yu Y T, Li W L, Li H Y, Li M Y, Yuan W Z 2018 Nanomaterials 8 185Google Scholar

    [19]

    Ni H B, Yuan G H, Sun L D, Chang N, Zhang D, Chen R P, Jiang L Y, Chen H Y, Gu Z Z, Zhao X W 2018 RSC Adv. 8 20117Google Scholar

    [20]

    Luneburg R K 1966 Mathematical Theory of Optics (Berkeley: University of California Press) p305

    [21]

    Liu T, Yang S M, Jiang Z D 2016 Opt. Express 24 16297Google Scholar

    [22]

    Chen G, Wu Z X, Yu A P, et al. 2016 Sci. Rep. 6 37776Google Scholar

    [23]

    张蕾, 蔡阳健, 陆漩辉 2004 53 1777Google Scholar

    Zhang L, Cai Y J, Lu X H 2004 Acta Phys. Sin. 53 1777Google Scholar

    [24]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N 2013 Appl. Phys. Lett. 102 031108Google Scholar

    [25]

    郁道银, 谈恒英 2011 工程光学 (北京: 机械工业出版社) 第118页

    Yu D Y, Tan H Y 2011 Engineering Optics (Beijing: China Machine Press) p118 (in Chinese)

  • 图 1  SOL衍射聚焦示意图

    Fig. 1.  Schematic diagram of diffraction focusing of SOL.

    图 2  SOL1的聚焦光场FDTD计算结果 (a) 轴向光强分布; (b) 焦平面内横向光强分布(Y方向)

    Fig. 2.  Focused light field of SOL1 by FDTD simulation: (a) On-axis intensity distribution; (b) transverse intensity distribution in the focal plane (Y-direction).

    图 3  SOL聚焦性能变化(FDTD) (a) 光斑横向尺寸; (b) 光斑中心强度

    Fig. 3.  Focusing performance of SOL (FDTD): (a) Transverse size; (b) central intensity.

    图 4  SOL2的聚焦光场FDTD计算结果 (a) 轴向光强分布; (b) 焦平面内横向光强分布(Y方向)

    Fig. 4.  Focused light field of SOL2 by FDTD simulation: (a) On-axis intensity distribution; (b) transverse intensity distribution in the focal plane (Y-direction).

    图 5  SOL1聚焦光斑电场分布的FDTD结果 (a) 均匀平面波照明; (b) w0 = a/2的高斯光束照明

    Fig. 5.  Electric field distribution of SOL1 by FDTD simulation: (a) Uniform plane beam illumination; (b) w0 = a/2 Gaussian beam illumination.

    图 6  BG径向偏振光束照明条件下SOL聚焦光场的VAS计算结果 (a), (b) SOL1; (c), (d) SOL2

    Fig. 6.  Focused light intensity of SOL by VAS calculation under BG radially polarized illumination: (a), (b) SOL1; (c), (d) SOL2.

    图 7  SOL对倾斜平行光的衍射聚焦成像示意图

    Fig. 7.  Schematic diagram of diffraction focused imaging by SOL under oblique illumination.

    图 8  倾斜平行光照明的SOL衍射聚焦示意图

    Fig. 8.  Schematic diagram of diffraction focusing by SOL under oblique illumination.

    图 9  振幅型SOL的倾斜照明FDTD聚焦计算结果 (a), (c), (e) SOL5; (b), (d), (f) SOL6

    Fig. 9.  Focusing results of amplitude-type SOL under oblique illumination: (a), (c), (e) SOL5; (b), (d), (f) SOL6.

    图 10  倾斜照明SOL的聚焦光斑尺寸 (a) FWHMx ; (b) FWHMz

    Fig. 10.  Focal spot size of SOL under oblique illumination: (a) FWHMx ; (b) FWHMz .

    图 11  不同照明角度下SOL的聚焦光斑强度

    Fig. 11.  Focal intensity of SOL varying with oblique illumination angle.

    图 12  聚焦光斑角位置变化 (a) $\omega $-$\omega '$关系曲线; (b)$\omega $-$\varGamma $关系曲线

    Fig. 12.  Angle position of focusing spot: (a) $\omega $-$\omega '$; (b) $\omega $-$\varGamma $.

    图 13  SOL的场曲 (a) SOL3; (b) SOL4

    Fig. 13.  Field curvature of SOL: (a) SOL3; (b) SOL4.

    表 1  优化设计的SOL结构参数

    Table 1.  Structural parameters of optimized SOL.

    SOL类型r/μmD/μmfsol/μmNAri /μmti
    SOL1振幅0.2163.50.92[0.2, 0.4, 1.0, 1.2, 2.0, 2.2, 2.4, 2.6, 3.2,
    3.6, 3.8, 4.0, 4.2, 4.6, 4.8, 5.2, 5.4,
    6.0, 6.4, 6.8, 7.0, 7.4, 7.6, 8.0]
    [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
    0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
    SOL2相位0.2163.50.92[0.2, 0.6, 1.0, 1.2, 1.6, 1.8, 2.0, 2.4,
    3.0, 3.2, 4.8, 5.0, 5.4, 5.8, 6.2,
    6.6, 6.8, 7.2, 7.4, 8.0]
    [–1, 1, –1, 1, –1, 1, –1, 1,
    –1, 1, –1, 1, –1, 1,
    –1, 1, –1, 1, –1, 1]
    SOL3相位0.2102.00.93[0.473, 0.885, 1.458, 1.969, 2.382,
    2.842, 3.044, 4.239, 4.745, 5.000]
    [1, j, 1, j, 1, j, 1, j, 1, j]
    SOL4相位0.2109.90.45[0.268, 0.468, 1.165, 1.365, 1.734,
    3.189, 3.399, 4.278, 4.792, 5.000]
    [j, 1, j, 1, j, 1, j, 1, j, 1]
    SOL5振幅0.2101.90.93[0.600, 0.899, 1.915, 2.190, 2.440,
    3.756, 4.076, 4.357, 4.769, 5.000]
    [0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
    SOL6振幅0.21010.10.44[0.300, 0.506, 1.248, 1.460, 1.660, 2.885,
    3.085, 3.335, 3.755, 4.094, 4.294, 5.000]
    [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
    下载: 导出CSV
    Baidu
  • [1]

    Rogers E T F, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zhelidev N I 2012 Nat. Mater. 11 432Google Scholar

    [2]

    刘涛 2013 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu T 2013 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [3]

    Francia G T D 1952 IL Nuovo Cimento 9 426Google Scholar

    [4]

    邱丽荣 2005 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Qiu L R 2005 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [5]

    Diao J S, Yuan W Z, Yu Y T, Zhu Y C, Wu Y 2016 Opt. Express 24 1924Google Scholar

    [6]

    Wu J, Wu Z X, He Y G, Yu A P, Zhang Z H, Wen Z Q, Chen G 2017 Opt. Express 25 6274Google Scholar

    [7]

    Liu T, Tan J B, Liu J, Wang H T 2013 Opt. Lett. 38 2742Google Scholar

    [8]

    Liu T, Liu Q, Yang S M, Jiang Z D, Wang T, Zhang G F 2017 Appl. Opt. 56 3725Google Scholar

    [9]

    Liu T, Tan J B, Liu J, Wang H T 2013 Opt. Express 21 15090Google Scholar

    [10]

    Liu T, Shen T, Yang S M, Jiang Z D 2015 J. Opt. 17 035610Google Scholar

    [11]

    Liu T, Liu Q, Yang S M, Jiang Z D, Wang T, Yang X K 2017 Opt. Commun. 393 72Google Scholar

    [12]

    Yuan G H, Rogers Edward T F, Zheludev N I 2017 Light: Sci. Appl. 6 e17036Google Scholar

    [13]

    Qin F, Huang K, Wu J F, Teng J H, Qiu C W, Hong M H 2017 Adv. Mater. 29 1602721Google Scholar

    [14]

    武靖 2018 硕士学位论文 (重庆: 重庆大学)

    Wu J 2018 M. S. Thesis (Chongqing: Chongqing university) (in Chinese)

    [15]

    Nagarajan A, Stoevelaar L P, Silvestri F, et al. 2019 Opt. Express 27 20012Google Scholar

    [16]

    Liu T, Wang T, Yang S M, Sun L, Jiang Z D 2015 Opt. Express 23 32139Google Scholar

    [17]

    Yang S M, Wang T, Liu T, Jiang Z D 2016 Opt. Commun. 372 166Google Scholar

    [18]

    Yu Y T, Li W L, Li H Y, Li M Y, Yuan W Z 2018 Nanomaterials 8 185Google Scholar

    [19]

    Ni H B, Yuan G H, Sun L D, Chang N, Zhang D, Chen R P, Jiang L Y, Chen H Y, Gu Z Z, Zhao X W 2018 RSC Adv. 8 20117Google Scholar

    [20]

    Luneburg R K 1966 Mathematical Theory of Optics (Berkeley: University of California Press) p305

    [21]

    Liu T, Yang S M, Jiang Z D 2016 Opt. Express 24 16297Google Scholar

    [22]

    Chen G, Wu Z X, Yu A P, et al. 2016 Sci. Rep. 6 37776Google Scholar

    [23]

    张蕾, 蔡阳健, 陆漩辉 2004 53 1777Google Scholar

    Zhang L, Cai Y J, Lu X H 2004 Acta Phys. Sin. 53 1777Google Scholar

    [24]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N 2013 Appl. Phys. Lett. 102 031108Google Scholar

    [25]

    郁道银, 谈恒英 2011 工程光学 (北京: 机械工业出版社) 第118页

    Yu D Y, Tan H Y 2011 Engineering Optics (Beijing: China Machine Press) p118 (in Chinese)

  • [1] 段美刚, 赵映, 左浩毅. 基于迭代算法的不同状态散射光场聚焦.  , 2024, 73(12): 124203. doi: 10.7498/aps.73.20231991
    [2] 高斯, 王子涵, 滑建冠, 李乾坤, 李爱武, 于颜豪. 飞秒激光加工蓝宝石超衍射纳米结构.  , 2017, 66(14): 147901. doi: 10.7498/aps.66.147901
    [3] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展.  , 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [4] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件.  , 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [5] 任志君, 李晓东, 金洪震. Pearcey光束簇的实验产生和光学结构研究.  , 2015, 64(23): 234205. doi: 10.7498/aps.64.234205
    [6] 陈礼诚, 张冬仙, 章海军, 王旭龙琦. 基于微纳结构与金属纳米层的颜色调控技术研究.  , 2015, 64(3): 038102. doi: 10.7498/aps.64.038102
    [7] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦.  , 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [8] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究.  , 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [9] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析.  , 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [10] 王铮, 高春清, 辛璟焘. 高阶矢量光束高数值孔径聚焦特性的研究.  , 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [11] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量.  , 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [12] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究.  , 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [13] 赵鼎. 关于闭合及偏置PCM结构约束带状电子注可行性的研究.  , 2010, 59(3): 1712-1720. doi: 10.7498/aps.59.1712
    [14] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析.  , 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [15] 余志强, 谢泉, 肖清泉, 赵珂杰. Mg2Si晶体结构及消光特性的研究.  , 2009, 58(10): 6889-6893. doi: 10.7498/aps.58.6889
    [16] 刘 斌, 金伟其, 董立泉. 热成像系统前置栅网结构的衍射效应分析.  , 2008, 57(9): 5578-5583. doi: 10.7498/aps.57.5578
    [17] 江秀娟, 周申蕾, 林尊琪, 朱 俭. 利用消衍射透镜列阵及光谱色散平滑实现焦斑均匀辐照.  , 2006, 55(11): 5824-5828. doi: 10.7498/aps.55.5824
    [18] 刘玉玲, 卢振武. 亚波长衍射微透镜色散的数值分析.  , 2004, 53(6): 1782-1787. doi: 10.7498/aps.53.1782
    [19] 张军, 张杰, 陈清, 彭练矛, 苍宇, 王怀斌, 仲佳勇. 利用飞秒激光等离子体产生的超热电子进行衍射实验的可行性研究.  , 2002, 51(8): 1764-1767. doi: 10.7498/aps.51.1764
    [20] 李翠莲, 刘有延. 一维Fibonacci类准晶的衍射性质.  , 2001, 50(2): 217-222. doi: 10.7498/aps.50.217
计量
  • 文章访问数:  7200
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-19
  • 修回日期:  2020-05-30
  • 上网日期:  2020-06-05
  • 刊出日期:  2020-09-20

/

返回文章
返回
Baidu
map