搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高对比度目标的电磁逆散射超分辨成像

范启蒙 尹成友

引用本文:
Citation:

高对比度目标的电磁逆散射超分辨成像

范启蒙, 尹成友

Super-resolution imaging of high-contrast target in elctromagnetic inverse scattering

Fan Qi-Meng, Yin Cheng-You
PDF
导出引用
  • 提出了一种适用于高对比度目标的超分辨成像方法,通过结合对比度源反演方法与基于轨道角动量的超分辨技术,实现对高对比度目标的超分辨成像.首先采用基于轨道角动量的成像方法求解出对比度函数,将其作为对比度源反演方法的迭代初值,虽然初值结果与实际目标相差较大,但是由于初值中已经包含了关于目标的倏逝波信息,再利用这个初值开始迭代便可以得到超分辨重建结果,这种方法具有一定的抗噪声能力.本文研究表明,为了实现超分辨成像,一方面需要将目标对应的倏逝波信息转化到测量数据中,另一方面还要保证成像算法能够充分利用这些信息.本文所引申出的关于超分辨信息的概念对于逆散射超分辨成像的研究具有一定的借鉴意义.
    A method for the super-resolution imaging of two-dimensional (2D) high-contrast targets is presented. There are two main methods to reconstruct unknown targets with super resolution. One is to illuminate the targets with specific incident fields and transform the information about the evanescent waves into the propagation waves, and the other is to adopt non-linear inversion methods where the multiple scattering within the objects are considered. For the specific-incident-field method, it has been proved that the orbital-angular-momentum (OAM)-carrying electromagnetic (EM) waves can be employed to image unknown targets with super resolution. In fact, OAM-carrying EM waves can transform the information about the evanescent waves into the propagation waves. Thus the resolution of imaging results can break the Rayleigh limit, namely super resolution. At present, the application of OAM-based super-resolution algorithm is only valid for weak scatters based on Born approximation. For the non-linear inversion methods, the contrast source inversion (CSI) is widely used to reconstruct unknown targets, including large-contrast or complex ones. In the CSI method, the information about the evanescent waves is naturally involved since the EM coupling within the objects is taken into account. Thus super resolution can also be achieved by the CSI method. This paper demonstrates a novel algorithm for super resolution of large-contrast targets by combining the OAM-based super-resolution technique and the CSI method. And the better resolution is achieved than by the CSI method. Firstly, 2D OAM EM waves are generated using uniform circular array of line source, and the region of interest is illuminated by the OAM beams of different topological charges. So the information about the evanescent waves can be converted into the propagation waves. Secondly, Born approximation is used to obtain the starting value of the contrast. In the process of evaluating the contrast, the super-resolution information is fully utilized. Thirdly, the starting value of the contrast source is evaluated using the starting value of the contrast. Then the CSI method starts to be iterated. Since the information about the evanescent waves is always involved in the iterating process, super-resolution reconstruction can be obtained and is better than that obtained by the CSI method. Numerical experiments show the accuracy of the algorithm by testing different scenarios. The resolution and outline of the target are reconstructed accurately even when the measurement data are corrupted by noise. To sum up, to reconstruct unknown targets with super resolution, one should firstly transform the information about the evanescent waves into the propagation waves, and secondly make full use of the super-resolution information in the inversion methods. The conclusion of this paper may provide an insight into the super resolution in EM inverse scattering.
      通信作者: 尹成友, cyouyin@sina.com
    • 基金项目: 国防预研基金(批准号:51333020201)资助的课题.
      Corresponding author: Yin Cheng-You, cyouyin@sina.com
    • Funds: Project supported by the National Defense Pre-Research Foundation of China (Grant No. 51333020201).
    [1]

    Kirsch A 2016 An Introduction to the Mathematical Theory of Inverse Problems Second Edition (Beijing: World Publishing Corporation) pp191-195

    [2]

    Yang J G, Huang X T, Jin T 2014 Compressed Sensing Radar Imaging (Beijing: Science Press) p5 (in Chinese) [杨俊刚, 黄晓涛, 金添 2014 压缩感知雷达成像(北京: 科学出版社) 第5页]

    [3]

    Gao F Q, van Veen B D, Hagness S C 2015 IEEE Trans. Antennas Propag. 63 3540

    [4]

    Rubæk T, Meaney P M, Meincke P, Paulsen K D 2007 IEEE Trans. Antennas Propag. 55 2320

    [5]

    Slaney M, Kak A C, Larsen L E 1984 IEEE Trans. Microwave Theory Tech. 32 860

    [6]

    Wang Y M, Chew W C 1989 Int. J. Imaging Syst. Technol. 1 100

    [7]

    Kleinman R E, van den Berg P M 1992 J. Comput. Appl. Math. 42 17

    [8]

    van den Berg P M, Kleinman R E 1997 Inverse Prob. 13 1607

    [9]

    van den Berg P M, Van Broekhoven A L, Abubakar A 1999 Inverse Prob. 15 1325

    [10]

    van den Berg P M, Abubakar A, Fokkema J T 2003 Radio Sci. 38 8022

    [11]

    Oliveri G, Anselmi N, Massa A 2014 IEEE Trans. Antennas Propag. 62 5157

    [12]

    Anselmi N, Salucci M, Oliveri G, Massa A 2015 IEEE Trans. Antennas Propag. 63 4889

    [13]

    Pu M B, Wang C T, Wang Y Q, Luo X G 2017 Acta Phys. Sin. 66 144101 (in Chinese) [蒲明博, 王长涛, 王彦钦, 罗先刚 2017 66 144101]

    [14]

    Guo C, Zhang Y 2017 Acta Phys. Sin. 66 147804 (in Chinese) [郭畅, 张岩 2017 66 147804]

    [15]

    Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L 1991 Science 251 1468

    [16]

    Hartschuh A, Sanchez E J, Xie X S, Novotny L 2003 Phys. Rev. Lett. 90 095503

    [17]

    Huang F M, Zheludev N I 2009 Nano Lett. 9 1249

    [18]

    Wong A M H, Eleftheriades G V 2015 Sci. Rep. 5 8449

    [19]

    Dong X H, Wong A M H, Kim M, Eleftheriades G V 2017 Optica 4 1126

    [20]

    Cui T J, Chew W C, Yin X X, Hong W 2004 IEEE Trans. Antennas Propag. 52 1398

    [21]

    Aharonov Y, Anandan J, Popescu S, Vaidman L 1990 Phys. Rev. Lett. 64 2965

    [22]

    Berry M V 1994 J. Phys. A: Math. Gen. 27 L391

    [23]

    Ferreira P J S G, Kempf A 2006 IEEE Trans. Signal Process. 54 3732

    [24]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [25]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313

    [26]

    Liu K, Cheng Y Q, Li X, Qin Y L, Wang H Q, Jiang Y W 2016 IEEE Antennas Wirel. Propag. Lett. 15 1873

    [27]

    Liu K, Cheng Y Q, Gao Y, Li X, Qin Y L, Wang H Q 2017 Appl. Phys. Lett. 110 164102

    [28]

    Li L L, Li F 2013 Phys. Rev. E 88 033205

    [29]

    Lerosey G, Rosney J D, Tourin A, Fink M 2007 Science 315 1119

    [30]

    Zelenchuk D, Fusco V 2013 IEEE Antennas Wirel. Propag. Lett. 12 284

    [31]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Rsham B 2010 IEEE Trans. Antennas Propag. 58 565

  • [1]

    Kirsch A 2016 An Introduction to the Mathematical Theory of Inverse Problems Second Edition (Beijing: World Publishing Corporation) pp191-195

    [2]

    Yang J G, Huang X T, Jin T 2014 Compressed Sensing Radar Imaging (Beijing: Science Press) p5 (in Chinese) [杨俊刚, 黄晓涛, 金添 2014 压缩感知雷达成像(北京: 科学出版社) 第5页]

    [3]

    Gao F Q, van Veen B D, Hagness S C 2015 IEEE Trans. Antennas Propag. 63 3540

    [4]

    Rubæk T, Meaney P M, Meincke P, Paulsen K D 2007 IEEE Trans. Antennas Propag. 55 2320

    [5]

    Slaney M, Kak A C, Larsen L E 1984 IEEE Trans. Microwave Theory Tech. 32 860

    [6]

    Wang Y M, Chew W C 1989 Int. J. Imaging Syst. Technol. 1 100

    [7]

    Kleinman R E, van den Berg P M 1992 J. Comput. Appl. Math. 42 17

    [8]

    van den Berg P M, Kleinman R E 1997 Inverse Prob. 13 1607

    [9]

    van den Berg P M, Van Broekhoven A L, Abubakar A 1999 Inverse Prob. 15 1325

    [10]

    van den Berg P M, Abubakar A, Fokkema J T 2003 Radio Sci. 38 8022

    [11]

    Oliveri G, Anselmi N, Massa A 2014 IEEE Trans. Antennas Propag. 62 5157

    [12]

    Anselmi N, Salucci M, Oliveri G, Massa A 2015 IEEE Trans. Antennas Propag. 63 4889

    [13]

    Pu M B, Wang C T, Wang Y Q, Luo X G 2017 Acta Phys. Sin. 66 144101 (in Chinese) [蒲明博, 王长涛, 王彦钦, 罗先刚 2017 66 144101]

    [14]

    Guo C, Zhang Y 2017 Acta Phys. Sin. 66 147804 (in Chinese) [郭畅, 张岩 2017 66 147804]

    [15]

    Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L 1991 Science 251 1468

    [16]

    Hartschuh A, Sanchez E J, Xie X S, Novotny L 2003 Phys. Rev. Lett. 90 095503

    [17]

    Huang F M, Zheludev N I 2009 Nano Lett. 9 1249

    [18]

    Wong A M H, Eleftheriades G V 2015 Sci. Rep. 5 8449

    [19]

    Dong X H, Wong A M H, Kim M, Eleftheriades G V 2017 Optica 4 1126

    [20]

    Cui T J, Chew W C, Yin X X, Hong W 2004 IEEE Trans. Antennas Propag. 52 1398

    [21]

    Aharonov Y, Anandan J, Popescu S, Vaidman L 1990 Phys. Rev. Lett. 64 2965

    [22]

    Berry M V 1994 J. Phys. A: Math. Gen. 27 L391

    [23]

    Ferreira P J S G, Kempf A 2006 IEEE Trans. Signal Process. 54 3732

    [24]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [25]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313

    [26]

    Liu K, Cheng Y Q, Li X, Qin Y L, Wang H Q, Jiang Y W 2016 IEEE Antennas Wirel. Propag. Lett. 15 1873

    [27]

    Liu K, Cheng Y Q, Gao Y, Li X, Qin Y L, Wang H Q 2017 Appl. Phys. Lett. 110 164102

    [28]

    Li L L, Li F 2013 Phys. Rev. E 88 033205

    [29]

    Lerosey G, Rosney J D, Tourin A, Fink M 2007 Science 315 1119

    [30]

    Zelenchuk D, Fusco V 2013 IEEE Antennas Wirel. Propag. Lett. 12 284

    [31]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Rsham B 2010 IEEE Trans. Antennas Propag. 58 565

  • [1] 陈鑫淼, 李海英, 吴涛, 孟祥帅, 黎凤霞. 金属目标对贝塞尔涡旋波束的近场电磁散射特性.  , 2023, 72(10): 100302. doi: 10.7498/aps.72.20222192
    [2] 罗泽伟, 武戈, 陈挚, 邓驰楠, 万蓉, 杨涛, 庄正飞, 陈同生. 双通道结构光照明超分辨定量荧光共振能量转移成像系统.  , 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [3] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像.  , 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [4] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [5] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性.  , 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [6] 王佳林, 严伟, 张佳, 王璐玮, 杨志刚, 屈军乐. 受激辐射损耗超分辨显微成像系统研究的新进展.  , 2020, 69(10): 108702. doi: 10.7498/aps.69.20200168
    [7] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展.  , 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [8] 胡睿璇, 潘冰洋, 杨玉龙, 张伟华. 基于线性成像系统的光学超分辨显微术回顾.  , 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [9] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析.  , 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [10] 赵光远, 郑程, 方月, 匡翠方, 刘旭. 基于点扫描的超分辨显微成像进展.  , 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [11] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展.  , 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [12] 李少东, 陈文峰, 杨军, 马晓岩. 低信噪比下的二维联合线性布雷格曼迭代快速超分辨成像算法.  , 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [13] 丁亮, 刘培国, 何建国, Amer Zakaria, Joe LoVetri. 金属圆柱腔体中使用非均一背景增强微波断层成像.  , 2014, 63(4): 044102. doi: 10.7498/aps.63.044102
    [14] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像.  , 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [15] 支绍韬, 章海军, 张冬仙. 基于大数值孔径环形光锥照明的超分辨光学显微成像方法研究.  , 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [16] 王芳芳, 张业荣. 基于支持向量机的电磁逆散射方法.  , 2012, 61(8): 084101. doi: 10.7498/aps.61.084101
    [17] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统.  , 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [18] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究.  , 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [19] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究.  , 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [20] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究.  , 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
计量
  • 文章访问数:  8388
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-02
  • 修回日期:  2018-03-15
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map