Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Defects and thermoelectric performance of ternary chalcopyrite CuInTe2-based semiconductors doped with Mn

Wang Hong-Xiang Ying Peng-Zhan Yang Jiang-Feng Chen Shao-Ping Cui Jiao-Lin

Citation:

Defects and thermoelectric performance of ternary chalcopyrite CuInTe2-based semiconductors doped with Mn

Wang Hong-Xiang, Ying Peng-Zhan, Yang Jiang-Feng, Chen Shao-Ping, Cui Jiao-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In thermoelectric (TE) semiconductors, there are three physical parameters that govern the TE performance (i.e. Seebeck coefficient (), electrical conductivity (), and thermal conductivity ()); they are interrelated, hence it is hard to optimize them simultaneously. In order to improve the TE performance, we need to further explore new materials. Ternary chalcopyrite (diamond-like) I-III-VI2 semiconductors (Eg = 1:02 eV) are new materials of the TE family, which have potential in conversion between heat and electricity. Since in the ternary chalcopyrite structure, such as Cu(Ag) MTe2, there is an inherent Coulomb attraction between charged defects MCu(Ag)2+ and 2VCu(Ag)- (a native defect pair, i.e., metal M-on-Cu or Ag antisites and two Cu or Ag vacancies), hence the electronic and structural properties can easily be tailored if these two defects, along with the creation of other defects, are modified through the introduciton of foreign elements. Besides, the ternary I-III-VI2 compounds often show tetragonal distortion because 0.25, = c/2a 1 (here and are the anion position displacement parameters, and a and c are the lattice parameters), and the cationanion distances are not equal (dCuTedInTe). Any occupation by foreign elements in the cation sites of I-III-VI2 will cause the redistribution of bond charges between I-VI and III-VI, thus leading to a tiny adjustment of the crystal structure and altering the phonon scattering behavior. In this work, we substitute Mn for Cu in the chalcopyrite CuInTe2 and prepare the Cu-poor Cu1-xInMnxTe2 semiconductors. Investigations of Z-ray patterns after Rietveld refinement reveal that Mn prefers In to Cu lattice sites for low Mn content (x 0.1), thus creating MnIn- as an active acceptor, and improving the carrier concentration (n) and electrical conductivity as Mn content increases. However, Mn can either occupy In or Cu sites simultaneously when x 0.1, and generate both the donor defect MnCu+ and the acceptor defect MnIn-. In this case, annihilation may occur between these two defects, allowing the reduction in both the defect and carrier concentrations. Because of the annihilation between the two defects, two values (|| = |-0.25| and ||= |-1.0|) reduce, this only yields a subtle change in the difference between mean cation-anion distance (RInTe-RCuTe), indicating a small distortion tendency in lattice structure as Mn content increases. Because of this, there is a limited enhancement in lattice thermal conductivity (L) at high temperatures. As a consequence, we attain an optimal TE performance at a certain Mn content (x = 0.05) with the dimensionless figure of merit (ZT) ZT = 0.84 at 810.0 K, which is about twice as much as that of Mn-free CuInTe2.
      Corresponding author: Ying Peng-Zhan, ypz3889@sina.com;cuijiaolin@163.com ; Cui Jiao-Lin, ypz3889@sina.com;cuijiaolin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51171084), the Zhejiang Provincial Natural Science Foundation, China (Grant No. LY14E010003), and the Ningbo Natural Science Foundation, China (Grant No. 2014A610016).
    [1]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [2]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [3]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [4]

    Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q, Uher C 2012 Phys. Rev. Lett. 108 166601

    [5]

    Biswas K, He J, Blum I D, Wu C, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414

    [6]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727

    [7]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinses) [陈晓彬, 段文晖 2015 64 186302]

    [8]

    Wu H N, Sun X, Gong W J, Yi G Y 2015 Acta Phys. Sin. 64 077301 (in Chinese) [吴海娜, 孙雪, 公卫江, 易光宇 2015 64 077301]

    [9]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 60 027202]

    [10]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201 (in Chinese) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]

    [11]

    Wang S X, Zhang X 2015 J. Thermal Sci. Techno. 14 119 (in Chinses) [王世学, 张星 2015 热科学与技术 14 119]

    [12]

    Walia S, Weber R, Balendhran S, Yao D, Abrahamson J T, Zhuiykov S, Bhaskaran M, Sriram S, Strano M S, Kalantar-Zadeh K 2012 Chem. Commun. 48 7462

    [13]

    Walia S, Balendhran S, Yi P, Yao D, Zhuiykov S, Pannirselvam M, Weber R, Strano M S, Bhaskaran M, Sriram S, Kalantar-Zadeh K 2013 J. Phys. Chem.C 117 9137

    [14]

    Walia S, Weber R, Sriram S, Bhaskaran M, Latham K, Zhuiykov S, Kalantar-Zadeh K 2011 Energy Environ. Sci. 4 3558

    [15]

    Walia S, Weber R, Latham K, Petersen P, Abrahamson J T, Strano M S, Kalantar-Zadeh K 2011 Adv. Func. Mater. 21 2072

    [16]

    Shimizu S, Choi W, Abrahamson J T, Strano M S 2011 Phys. Sta. Sol. 248 2445

    [17]

    Lee K Y, Hwang H, Choi W 2014 ACS Appl.Mater. Interfaces 6 15575

    [18]

    Abrahamson J T, Sempere B, Walsh M P, Forman J M, Sen F, Sen S, Mahajan S G, Paulus G L, Wang Q H, Choi W, Strano M S 2013 ACS Nano 7 6533

    [19]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 Adv. Mater. 24 3622

    [20]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem.Commun. 48 3818

    [21]

    Fan F, Wu L, Yu S 2014 Energ. Environ. Sci. 7 190

    [22]

    Zhang J, Liu R, Cheng N, Zhang Y, Yang J, Uher C, Shi X, Chen L, Zhang W 2014 Adv. Mater. 26 3848

    [23]

    Wang L, Ying P, Deng Y, Zhou H, Du Z, Cui J 2014 RSC Adv. 4 33897

    [24]

    Zhang S B, Wei S H, Zunger A 1998 Phys. Rev. B 57 9642

    [25]

    Zhang S B, Wei S H, Zunger A 1997 Phys. Rev. Lett. 78 4059

    [26]

    Rincn C, Wasim S M, Marn G 2002 Appl. Phys. Lett. 80 998

    [27]

    Yang J, Chen S, Du Z, Liu X, Cui J 2014 Dalton Trans. 43 15228

    [28]

    Yuan Z K, Peng X, Chen S Y 2015 Acta Phys. Sin. 64 186102 (in Chinese) (袁振坤, 许鹏, 陈时友 2015 64 186102]

    [29]

    Lee J H, Wu J Q, Grossman J C 2010 Phys. Rev. Lett. 104 016602

    [30]

    Roussak L, Wagner G, Schorr S, Bente K 2005 J. Solid State Chem. 178 3476

    [31]

    Liu X, Zhu T, Wang H, Hu L, Xie H, Jiang G, Snyder J G, Zhao X B 2013 Adv. Energy Mater. 3 1238

    [32]

    Moulder J F, Chastain J Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, 1992) p261

    [33]

    Yao J, Takas N J, Schliefert M L, Paprocki D S, Blanchard P E R, Gou H, Mar A, Exstrom C L, Darveau S A, Poudeu P F, Aitken J A 2011 Phys. Rev. B 84 075203

    [34]

    Heo N H, Park J S, Kim Y J, Lim W T, Jung S W, Seff K 2003 J. Phys. Chem. B 107 1120

    [35]

    Zhou H, Park J 2015 Phys. Sta. Sol. (a) 212 414

    [36]

    Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J 2012 Appl. Phys. Lett. 100 231903

    [37]

    Abrahams S C, Bernstein J L 1973 J. Chem. Phys. 59 5415

    [38]

    Abrahams S C, Bernstein J L 1974 J. Chem. Phys 61 1140

    [39]

    Jaffe J E, Zunger A 1984 Phys Rev. B 29 1882

    [40]

    Luo Y, Yang J, Li G, Liu M, Xiao Y, Fu L, Li W, Zhu P, Peng J, Gao S, Zhang J 2014 Adv. Energy Mater. 4 1300599

    [41]

    Liu M, Qin X Y 2012 Appl. Phys. Lett. 101 132103

    [42]

    Liu M, Qin X Y, Liu C S, Zeng Z 2011 Appl. Phys. Lett. 99 062112

    [43]

    Lv H Y, Liu H J, Tan X J, Pan L, Wen Y W, Shi J, Tang X F 2012 Nanoscale 4 511

    [44]

    He J, Girard S N, Kanatzidis M G, Dravid V P 2010 Adv. Funct. Mater. 20 764

  • [1]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [2]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [3]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [4]

    Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q, Uher C 2012 Phys. Rev. Lett. 108 166601

    [5]

    Biswas K, He J, Blum I D, Wu C, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414

    [6]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727

    [7]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinses) [陈晓彬, 段文晖 2015 64 186302]

    [8]

    Wu H N, Sun X, Gong W J, Yi G Y 2015 Acta Phys. Sin. 64 077301 (in Chinese) [吴海娜, 孙雪, 公卫江, 易光宇 2015 64 077301]

    [9]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 60 027202]

    [10]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201 (in Chinese) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]

    [11]

    Wang S X, Zhang X 2015 J. Thermal Sci. Techno. 14 119 (in Chinses) [王世学, 张星 2015 热科学与技术 14 119]

    [12]

    Walia S, Weber R, Balendhran S, Yao D, Abrahamson J T, Zhuiykov S, Bhaskaran M, Sriram S, Strano M S, Kalantar-Zadeh K 2012 Chem. Commun. 48 7462

    [13]

    Walia S, Balendhran S, Yi P, Yao D, Zhuiykov S, Pannirselvam M, Weber R, Strano M S, Bhaskaran M, Sriram S, Kalantar-Zadeh K 2013 J. Phys. Chem.C 117 9137

    [14]

    Walia S, Weber R, Sriram S, Bhaskaran M, Latham K, Zhuiykov S, Kalantar-Zadeh K 2011 Energy Environ. Sci. 4 3558

    [15]

    Walia S, Weber R, Latham K, Petersen P, Abrahamson J T, Strano M S, Kalantar-Zadeh K 2011 Adv. Func. Mater. 21 2072

    [16]

    Shimizu S, Choi W, Abrahamson J T, Strano M S 2011 Phys. Sta. Sol. 248 2445

    [17]

    Lee K Y, Hwang H, Choi W 2014 ACS Appl.Mater. Interfaces 6 15575

    [18]

    Abrahamson J T, Sempere B, Walsh M P, Forman J M, Sen F, Sen S, Mahajan S G, Paulus G L, Wang Q H, Choi W, Strano M S 2013 ACS Nano 7 6533

    [19]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 Adv. Mater. 24 3622

    [20]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem.Commun. 48 3818

    [21]

    Fan F, Wu L, Yu S 2014 Energ. Environ. Sci. 7 190

    [22]

    Zhang J, Liu R, Cheng N, Zhang Y, Yang J, Uher C, Shi X, Chen L, Zhang W 2014 Adv. Mater. 26 3848

    [23]

    Wang L, Ying P, Deng Y, Zhou H, Du Z, Cui J 2014 RSC Adv. 4 33897

    [24]

    Zhang S B, Wei S H, Zunger A 1998 Phys. Rev. B 57 9642

    [25]

    Zhang S B, Wei S H, Zunger A 1997 Phys. Rev. Lett. 78 4059

    [26]

    Rincn C, Wasim S M, Marn G 2002 Appl. Phys. Lett. 80 998

    [27]

    Yang J, Chen S, Du Z, Liu X, Cui J 2014 Dalton Trans. 43 15228

    [28]

    Yuan Z K, Peng X, Chen S Y 2015 Acta Phys. Sin. 64 186102 (in Chinese) (袁振坤, 许鹏, 陈时友 2015 64 186102]

    [29]

    Lee J H, Wu J Q, Grossman J C 2010 Phys. Rev. Lett. 104 016602

    [30]

    Roussak L, Wagner G, Schorr S, Bente K 2005 J. Solid State Chem. 178 3476

    [31]

    Liu X, Zhu T, Wang H, Hu L, Xie H, Jiang G, Snyder J G, Zhao X B 2013 Adv. Energy Mater. 3 1238

    [32]

    Moulder J F, Chastain J Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, 1992) p261

    [33]

    Yao J, Takas N J, Schliefert M L, Paprocki D S, Blanchard P E R, Gou H, Mar A, Exstrom C L, Darveau S A, Poudeu P F, Aitken J A 2011 Phys. Rev. B 84 075203

    [34]

    Heo N H, Park J S, Kim Y J, Lim W T, Jung S W, Seff K 2003 J. Phys. Chem. B 107 1120

    [35]

    Zhou H, Park J 2015 Phys. Sta. Sol. (a) 212 414

    [36]

    Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J 2012 Appl. Phys. Lett. 100 231903

    [37]

    Abrahams S C, Bernstein J L 1973 J. Chem. Phys. 59 5415

    [38]

    Abrahams S C, Bernstein J L 1974 J. Chem. Phys 61 1140

    [39]

    Jaffe J E, Zunger A 1984 Phys Rev. B 29 1882

    [40]

    Luo Y, Yang J, Li G, Liu M, Xiao Y, Fu L, Li W, Zhu P, Peng J, Gao S, Zhang J 2014 Adv. Energy Mater. 4 1300599

    [41]

    Liu M, Qin X Y 2012 Appl. Phys. Lett. 101 132103

    [42]

    Liu M, Qin X Y, Liu C S, Zeng Z 2011 Appl. Phys. Lett. 99 062112

    [43]

    Lv H Y, Liu H J, Tan X J, Pan L, Wen Y W, Shi J, Tang X F 2012 Nanoscale 4 511

    [44]

    He J, Girard S N, Kanatzidis M G, Dravid V P 2010 Adv. Funct. Mater. 20 764

  • [1] He Jun-Song, Luo Feng, Wang Jian, Yang Shi-Guan, Zhai Li-Jun, Cheng Lin, Liu Hong-Xia, Zhang Yan, Li Yan-Li, Sun Zhi-Gang, Hu Ji-Fan. Thermoelectric properties of Co doped TiNiCoxSn alloys fabricated by melt spinning. Acta Physica Sinica, 2024, 73(10): 107201. doi: 10.7498/aps.73.20240112
    [2] Liu Chao, Yang Yue-Yang, Nan Ce-Wen, Lin Yuan-Hua. Thermoelectric properties and prospects of MAX phases and derived MXene phases. Acta Physica Sinica, 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [3] Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng. Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials. Acta Physica Sinica, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [4] Yuan Min-Hui, Le Wen-Kai, Tan Xiao-Jian, Shuai Jing. Research progress of two-dimensional covalent bond substructure Zintl phase thermoelectric materials. Acta Physica Sinica, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [5] Zhao Ying-Hao, Zhang Rui, Zhang Bo-Ping, Yin Yang, Wang Ming-Jun, Liang Dou-Dou. Phase structure and thermoelectric properties of Cu1.8–x Sbx S thermoelectric material. Acta Physica Sinica, 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [6] Huang Lu-Lu, Zhang Jian, Kong Yuan, Li Di, Xin Hong-Xing, Qin Xiao-Ying. Optimization of thermoelectric transport performance of nickel-doped CuGaTe2. Acta Physica Sinica, 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [7] Wang Ya-Ning, Chen Shao-Ping, Fan Wen-Hao, Guo Jing-Yun, Wu Yu-Cheng, Wang Wen-Xian. Interface performance of PbTe-based thermoelectric joints. Acta Physica Sinica, 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [8] Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng. Improving interface properties of Te based thermoelectric materials and composite electrodes. Acta Physica Sinica, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [9] Wang Tuo, Chen Hong-Yi, Qiu Peng-Fei, Shi Xun, Chen Li-Dong. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity. Acta Physica Sinica, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [10] Tao Ying, Qi Ning, Wang Bo, Chen Zhi-Quan, Tang Xin-Feng. Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites. Acta Physica Sinica, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [11] Zhang Yu, Wu Li-Hua, Zengli Jiao-Kai, Liu Ye-Feng, Zhang Ji-Ye, Xing Juan-Juan, Luo Jun. Microstructures and thermoelectric transports in PbSe-MnSe nano-composites. Acta Physica Sinica, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [12] Xue Li, Ren Yi-Ming. The first-principles study of electrical and thermoelectric properties of CuGaTe2 and CuInTe2. Acta Physica Sinica, 2016, 65(15): 156301. doi: 10.7498/aps.65.156301
    [13] Liu Hai-Yun, Liu Xiang-Lian, Tian Ding-Qi, Du Zheng-Liang, Cui Jiao-Lin. Acoustic charge transport behaviors of sulfur-doped wide gap Ga2Te3-based semiconductors. Acta Physica Sinica, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [14] Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng. Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel. Acta Physica Sinica, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [15] Huo Feng-Ping, Wu Rong-Gui, Xu Gui-Ying, Niu Si-Tong. Thermoelectric properties of (AgSbTe2)100-x (GeTe)x fabricated by hot pressing method. Acta Physica Sinica, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [16] Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui, Zhang Fan, Luo Jun. Synthesis and characterization of Sb2Te3 nanostructures. Acta Physica Sinica, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [17] Fan Ping, Zheng Zhuang-Hao, Liang Guang-Xing, Zhang Dong-Ping, Cai Xing-Min. Preparation and characterization of Sb2Te3 thermoelectric thin films by ion beam sputtering. Acta Physica Sinica, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [18] Yan Yong-Gao, Tang Xin-Feng, Liu Hai-Jun, Yin Ling-Ling, Zhang Qing-Jie. Thermoelectric properties of nonstoichiometric Ag1-xPb18SbTe20 materials. Acta Physica Sinica, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [19] Chen Xiao-Yang, Xu Xiang-Fan, Hu Rong-Xing, Ren Zhi, Xu Zhu-An, Cao Guang-Han. Synthesis and thermopower measurement of LixNayCoO2. Acta Physica Sinica, 2007, 56(3): 1627-1631. doi: 10.7498/aps.56.1627
    [20] Lü Qiang, Rong Jian-Ying, Zhao Lei, Zhang Hong-Chen, Hu Jian-Min, Xin Jiang-Bo. Influence of process parameters on the electrical properties of n-type and p-type Bi2Te3-based pseudo-ternary thermoelectric materials by the hot-pressing method. Acta Physica Sinica, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
Metrics
  • Abstract views:  7609
  • PDF Downloads:  234
  • Cited By: 0
Publishing process
  • Received Date:  15 November 2015
  • Accepted Date:  23 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回
Baidu
map