搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含硫宽禁带Ga2Te3基热电半导体的声电输运特性

刘海云 刘湘涟 田定琪 杜正良 崔教林

引用本文:
Citation:

含硫宽禁带Ga2Te3基热电半导体的声电输运特性

刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林

Acoustic charge transport behaviors of sulfur-doped wide gap Ga2Te3-based semiconductors

Liu Hai-Yun, Liu Xiang-Lian, Tian Ding-Qi, Du Zheng-Liang, Cui Jiao-Lin
PDF
导出引用
  • 目前对宽禁带半导体热电材料的研究开始升温, 原因是本征情况下宽禁带半导体往往具有低的热导率和高的Seebeck系数. Ga2Te3 是一类带有缺陷的宽禁带半导体, 其在临界温度680 10 K和757 10 K处会参与共析转变和包晶反应, 因此会产生反应热. 本次工作采用少量的S元素等电子替换Ga2Te3中的Te元素, 观察到在临界温度附近热焓的变化, 但没有相变发生. 受热焓变化的影响这类材料在临界温度附近出现了较活跃的声电输运行为, 具体表现为热容和Seebeck系数()明显增大及热扩散系数(热导率)和电导率下降. 例, 对于x=0.05的材料, 其值从596 K 时的376.3(VK-1)迅速增大到695 K时的608.2(VK-1), 然后又随温度升高到764 K时迅速降低到213.8(VK-1). 在596 K到812 K范围, Seebeck系数和电导率几乎随温度均呈Z字形变化. 这些输运行为的变化揭示了在Ga2Te3基半导体中声子和载流子的临界散射特点, 这种临界散射特征对以后的继续研究具有重要的参考价值.
    Wide gap semiconductors as the thermoelectric (TE) candidates have been increasingly interested because of their inherent high Seebeck coefficients and low thermal conductivities. Ga2Te3 is one of the typical defect compounds (Eg=1.65 eV) among the A2IIIB3VI type semiconductors, in which there are periodically self-assembled 2D vacancy planes that wrap the nanostructured domains. The vacancy planes scatter phonons highly effectively and are responsible for reducing the lattice thermal conductivity. Hence Ga2Te3 might be a good TE candidate. In the phase diagram of Ga-Te, Ga2Te3 is involved in the eutectoid and peritectic reactions at the critical temperatures (CTs) of 680 10 K and 757 10 K respectively. These reactions would lead to the generation of enthalpies of reactions, and induce the alteration of some thermo-physical properties. In the present work, we have not observed the phase transformations at CTs in the Ga2Te3-based materials with sulfur isoelectronic substitution for Te, which are prepared by powder metallurgy with the spark plasma sintering (SPS) technique, but can observe the generation of assumed enthalpies of reactions near CTs, which directly gives rise to the critical acoustic charge transport behaviors. The critical behaviors involve the remarkable increase of heat capacities and Seebeck coefficients and, at the same time, reductions of thermal diffusivities (thermal conductivities) and electrical conductivities. For example, the Seebeck coefficient () at x=0.05 increases rapidly from 376.3(VK-1) to 608.2(VK-1) when the temperature rises from 596 to 695 K, and then decreases to 213.8(VK-1) at 764 K. Similarly, all the S-doped samples, which have lowest electrical conductivities ( ) of 2.12102 (x=0.05), 0.25102 (x=0.1), 0.12102 -1m-1 (x=0.2) and 0.14102 -1m-1 (x=0.3) at 696725 K, undergo dramatic changes when the temperature rises to about 750 K, and then the electrical conductivities begin to decrease, and the changes tend to slow down. It is notable that both the Seebeck coefficients and electrical conductivities exhibit a typical zigzag temperature dependence in the temperature range from 596 to 812 K. These behaviors reveal the remarkable alterations in scattering mechanism of both phonons and carriers at temperatures near the CTs. Although the materials with these critical behaviors near CTs do not have satisfactory thermoelectric performance (ZTmax=0.17 at 793 K for x=0.3) as compared with the known binary Cu2Se, Ag2Se(S) or ternary based AgCrSe2 alloys, however, the findings of such critical transport behaviors have a great significance for future researches.
      通信作者: 崔教林, cuijiaolin@163.com
    • 基金项目: 国家自然科学基金(批准号: 51171084)、浙江省自然科学基金(批准号: LY14E010003)和宁波市自然科学基金(批准号: 2014 A610016)资助的课题.
      Corresponding author: Cui Jiao-Lin, cuijiaolin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51171084), the Zhejiang Provincial Natural Science Foundation (Grant No. LY14E010003), and the Ningbo Natural Science Foundation (Grant No. 2014 A610016).
    [1]

    Guizzetti G, Meloni F 1982 Luglio-Agosto 1D 503

    [2]

    Guymont M, Tomas A, Guittard M 1992 Philos. Mag. 66 133

    [3]

    Finkman E, Tauc J, Kershaw R, Wold A 1975 Phys. Rev. B 11 3785

    [4]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101

    [5]

    Cui J L, Gao Y L, Zhou H, Li Y P, Meng Q S, Yang J F 2012 Appl. Phys. Lett. 101 081908

    [6]

    Fu H, Ying P Z, Cui J L, Yan Y M, Zhang X J 2011 Rare Metal Mater. Eng. 40 849 (in Chinese) [付红, 应鹏展, 崔教林, 颜艳明, 张晓军 2011 稀有金属材料与工程 40 849]

    [7]

    Tian D, Liu H, Deng Y, Du Z, Cui J L 2014 RSC Adv. 4 34104

    [8]

    Wuyts K, Watte J, Langouche G, Silverans R E, G. Zgb, Jumas J C 1992 J. Appl. Phys. 71 744

    [9]

    Wang Z, Li H, Su X, Tang X 2011 Acta Phys. Sin. 60 027202(in Chinses) [王作成, 李涵, 苏贤礼, 唐新峰 2011 60 027202]

    [10]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201(in Chinses) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]

    [11]

    Liu H, Yuan X, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi X, Uher, C 2013 Adv. Mater. 25 6607

    [12]

    Xiao C, Xu J, Li K 2012 J. Am. Chem. Soc. 134 4287

    [13]

    Capps J, Drymiotis F, Lindsey S, Tritt T M 2010 Philos. Mag. Lett. 90 677

    [14]

    Wu C, Feng F, Feng J, Dai J, Peng L, Zhao J, Yang J, Si C, Wu Z, Xie Y 2011 J. Am. Chem. Soc. 133 13798

    [15]

    Wang Q, Qin X 2012 Proc. Eng. 27 77

    [16]

    Rao Z H, Wang S F, Zhang Y L, Peng F F, Cai S H 2013 Acta Phys. Sin. 62 056601(in Chinses) [饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒 2012 61 056601]

    [17]

    Hu G X, Qian M G 1980 Metallography (Shanghai: Shanghai Scientific and Technical Publishers) p350 (in Chinese) [胡庚祥, 钱苗根 1980 金属学 (上海: 上海科学技术出版社) (上海: 上海科学技术出版社) 第350页]

    [18]

    Gascoin F, Maignan A 2011 Chem. Mater. 23 2510

    [19]

    Gascoin F, Ottensmann S, Stark D, Hale S M, Snyder G J 2005 Adv. Func. Mater. 15 1860

  • [1]

    Guizzetti G, Meloni F 1982 Luglio-Agosto 1D 503

    [2]

    Guymont M, Tomas A, Guittard M 1992 Philos. Mag. 66 133

    [3]

    Finkman E, Tauc J, Kershaw R, Wold A 1975 Phys. Rev. B 11 3785

    [4]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101

    [5]

    Cui J L, Gao Y L, Zhou H, Li Y P, Meng Q S, Yang J F 2012 Appl. Phys. Lett. 101 081908

    [6]

    Fu H, Ying P Z, Cui J L, Yan Y M, Zhang X J 2011 Rare Metal Mater. Eng. 40 849 (in Chinese) [付红, 应鹏展, 崔教林, 颜艳明, 张晓军 2011 稀有金属材料与工程 40 849]

    [7]

    Tian D, Liu H, Deng Y, Du Z, Cui J L 2014 RSC Adv. 4 34104

    [8]

    Wuyts K, Watte J, Langouche G, Silverans R E, G. Zgb, Jumas J C 1992 J. Appl. Phys. 71 744

    [9]

    Wang Z, Li H, Su X, Tang X 2011 Acta Phys. Sin. 60 027202(in Chinses) [王作成, 李涵, 苏贤礼, 唐新峰 2011 60 027202]

    [10]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201(in Chinses) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]

    [11]

    Liu H, Yuan X, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi X, Uher, C 2013 Adv. Mater. 25 6607

    [12]

    Xiao C, Xu J, Li K 2012 J. Am. Chem. Soc. 134 4287

    [13]

    Capps J, Drymiotis F, Lindsey S, Tritt T M 2010 Philos. Mag. Lett. 90 677

    [14]

    Wu C, Feng F, Feng J, Dai J, Peng L, Zhao J, Yang J, Si C, Wu Z, Xie Y 2011 J. Am. Chem. Soc. 133 13798

    [15]

    Wang Q, Qin X 2012 Proc. Eng. 27 77

    [16]

    Rao Z H, Wang S F, Zhang Y L, Peng F F, Cai S H 2013 Acta Phys. Sin. 62 056601(in Chinses) [饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒 2012 61 056601]

    [17]

    Hu G X, Qian M G 1980 Metallography (Shanghai: Shanghai Scientific and Technical Publishers) p350 (in Chinese) [胡庚祥, 钱苗根 1980 金属学 (上海: 上海科学技术出版社) (上海: 上海科学技术出版社) 第350页]

    [18]

    Gascoin F, Maignan A 2011 Chem. Mater. 23 2510

    [19]

    Gascoin F, Ottensmann S, Stark D, Hale S M, Snyder G J 2005 Adv. Func. Mater. 15 1860

  • [1] 何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆. 熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能.  , 2024, 73(10): 107201. doi: 10.7498/aps.73.20240112
    [2] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能.  , 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [3] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能.  , 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [4] 黄露露, 张建, 孔源, 李地, 辛红星, 秦晓英. 黄铜矿Cu1–xNixGaTe2热电输运性质的优化.  , 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [5] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能.  , 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [6] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能.  , 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [7] 谢修华, 李炳辉, 张振中, 刘雷, 刘可为, 单崇新, 申德振. 点缺陷调控: 宽禁带II族氧化物半导体的机遇与挑战.  , 2019, 68(16): 167802. doi: 10.7498/aps.68.20191043
    [8] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究.  , 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [9] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林. Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能.  , 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [10] 薛丽, 任一鸣. CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究.  , 2016, 65(15): 156301. doi: 10.7498/aps.65.156301
    [11] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能.  , 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [12] 刘义, 张清, 李海金, 李勇, 刘厚通. Sr掺杂钙钛矿型氧化物Y1-xSrxCoO3的溶胶-凝胶制备及电阻率温度关系研究.  , 2013, 62(4): 047202. doi: 10.7498/aps.62.047202
    [13] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究.  , 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [14] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能.  , 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [15] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征.  , 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [16] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征.  , 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [17] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能.  , 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [18] 陈晓阳, 徐象繁, 胡荣星, 任 之, 许祝安, 曹光旱. LixNayCoO2的制备和热电性质.  , 2007, 56(3): 1627-1631. doi: 10.7498/aps.56.1627
    [19] 刘玮书, 张波萍, 李敬锋, 刘 静. 机械合金化合成CoSb3过程中的固相反应机理的热力学解释.  , 2006, 55(1): 465-471. doi: 10.7498/aps.55.465
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响.  , 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  6291
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-14
  • 修回日期:  2015-06-02
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map