Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials

Huang Qing-Song Duan Bo Chen Gang Ye Ze-Chang Li Jiang Li Guo-Dong Zhai Peng-Cheng

Citation:

Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials

Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng
PDF
HTML
Get Citation
  • Lead-free chalcogenide SnTe has a similar crystal structure and energy band structure to high performance thermoelectric material PbTe, which has been widely concerned in recent years. However, due to its low Seebeck coefficient, high intrinsic Sn vacancy concentration and high thermal conductivity, its intrinsic thermoelectric performance is poor. In this study, Mn-In-Cu co-doping SnTe-based thermoelectric materials are prepared by hot pressing sintering at high-temperature and high-pressure. Indium (In) doping brings the resonant level in SnTe and increases the density of states which greatly improves Seebeck coefficient at room temperature; the Seebeck coefficient of Sn1.04In0.01Te(Cu2Te)0.05 reaches 70 μV·K–1 at room temperature. With adding manganese (Mn), the Seebeck coefficient at room temperature is well preserved, indicating that Mn doping has little effect on the resonant level brought by In doping. In addition, due to the band convergence brought by Mn doping, the high temperature Seebeck coefficient of the material is improved, the maximum Seebeck coefficient reaches 215 μV·K–1 for the sample with 17% Mn doping amount at 873 K. Owing to the combination of band convergence and resonant level, the Seebeck coefficient of the whole temperature range of the material increases, the power factor of the material is also greatly optimized, and all samples have a power factor of more than 1.0 mW·m–1·K–2 at room temperature. On the other hand, the point defects brought by Mn alloying and the interstitial defects introduced by copper (Cu) enhance the phonon scattering and effectively reduce the lattice thermal conductivity of the material, the lattice thermal conductivity decreases to 0.68 W·m–1·K–1 at 873 K. The electrical and thermal properties of the materials are optimized simultaneously under the combination of various strategies, the peak zT ≈ 1.45 is obtained at 873 K in the p-type Sn0.89Mn0.15In0.01Te(Cu2Te)0.05 sample and the average zT of 300–873 K reaches 0.76. In the process of multi-strategy coordinated regulation of SnTe-based thermoelectric materials, the excellent properties of single strategy can be well maintained, which provides a possibility for further improving the performance of SnTe-based thermoelectric materials.
      Corresponding author: Duan Bo, duanboabc@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772231, 51972253) and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 2020IB001, 2020IB013)
    [1]

    Wood C 1988 Rep. Prog. Phys. 51 459Google Scholar

    [2]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [3]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [4]

    Brebrick R F 1963 J. Phys. Chem. Solids 24 27Google Scholar

    [5]

    Rogers L M 1968 J. Phys. D: Appl. Phys. 1 845Google Scholar

    [6]

    Wu H, Chang C, Feng D, Xiao Y, Zhang X, Pei Y, Zheng L, Wu D, Gong S, Chen Y, He J, Kanatzidis M G, Zhao L D 2015 Energy Environ. Sci. 8 3298Google Scholar

    [7]

    Banik A, Shenoy U S, Anand S, Waghmare U V, Biswas K 2015 Chem. Mater. 27 581Google Scholar

    [8]

    Tan G, Shi F, Doak J W, Sun H, Zhao L D, Wang P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2015 Energy Environ. Sci. 8 267Google Scholar

    [9]

    Tan G, Zhao L D, Shi F, Doak J W, Lo S H, Sun H, Wolverton C, Dravid V P, Uher C, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 7006Google Scholar

    [10]

    Tan X J, Shao H Z, He J, Liu G Q, Xu J T, Jiang J, Jiang H C 2016 Phys. Chem. Chem. Phys. 18 7141Google Scholar

    [11]

    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 Proc. Natl. Acad. Sci. U.S.A. 110 13261Google Scholar

    [12]

    Ma Z, Lei J, Zhang D, Wang C, Wang J, Cheng Z, Wang Y 2019 ACS Appl. Mater. Interfaces 11 33792Google Scholar

    [13]

    Bhat D K, Shenoy U S 2017 J. Phys. Chem. C 121 7123Google Scholar

    [14]

    Banik A, Vishal B, Perumal S, Datta R, Biswas K 2016 Energy Environ. Sci. 9 2011Google Scholar

    [15]

    Roychowdhury S, Biswas R K, Dutta M, Pati S K, Biswas K 2019 ACS Energy Lett. 4 1658Google Scholar

    [16]

    Tan G, Hao S, Hanus R C, Zhang X, Anand S, Bailey T P, Rettie A J E, Su X, Uher C, Dravid V P, Snyder G J, Wolverton C, Kanatzidis M G 2018 ACS Energy Lett. 3 705Google Scholar

    [17]

    Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y, Ge B 2016 Adv. Electron. Mater. 2 1600019Google Scholar

    [18]

    Hu L, Zhang Y, Wu H, Li J, Li Y, McKenna M, He J, Liu F, Pennycook S J, Zeng X 2018 Adv. Energy Mater. 8 1802116Google Scholar

    [19]

    Tang J, Gao B, Lin S, Li J, Chen Z, Xiong F, Li W, Chen Y, Pei Y 2018 Adv. Funct. Mater. 28 1803586Google Scholar

    [20]

    Tang J, Yao Z, Wu Y, Lin S, Xiong F, Li W, Chen Y, Zhu T, Pei Y 2020 Mater. Today Phys. 15 100247Google Scholar

    [21]

    Xu X, Cui J, Yu Y, Zhu B, Huang Y, Xie L, Wu D, He J 2020 Energy Environ. Sci. 13 5135Google Scholar

    [22]

    Blachnik R, Igel R 1974 Z. Naturforsch., B: Chem. Sci. 29 625Google Scholar

    [23]

    Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y, Pei Y 2017 Adv. Mater. 29 1605887Google Scholar

    [24]

    Li W, Chen Z, Lin S, Chang Y, Ge B, Chen Y, Pei Y 2015 J. Materiomics 1 307Google Scholar

    [25]

    Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B, Pei Y 2019 Joule 3 1276Google Scholar

    [26]

    Zak A K, Majid A W H, Abrishami M E, Yousefi R 2011 Solid State Sci. 13 251Google Scholar

    [27]

    Sarker P, Sen S K, Mia M N H, Pervez M F, Mortuza A A, Hossain S, Mortuza M F, Ali M H, Nur S, Kabir H, Chowdhury M A M 2021 Ceram. Int. 47 3626Google Scholar

    [28]

    Guo F, Cui B, Liu Y, Meng X, Cao J, Zhang Y, He R, Liu W, Wu H, Pennycook S J, Cai W, Sui J 2018 Small 14 1802615Google Scholar

    [29]

    Acharya S, Pandey J, Soni A 2016 Appl. Phys. Lett. 109 133904Google Scholar

    [30]

    Li S M, Li J Q, Yang L, Liu F S, Ao W Q, Li Y 2016 Mater. Des. 108 51Google Scholar

    [31]

    Uher C 2016 Materials Aspect of Thermoelectricity (Vol. 1) (Boca Raton: CRC Press) p8

    [32]

    傅铁铮, 沈家骏, 忻佳展, 朱铁军 2019 硅酸盐学报 47 1467

    Fu T Z, Shen J J, Qi J Z, Zhu T J 2019 J. Chin. Ceram. Soc. 47 1467

    [33]

    Brebrick R F, Strauss A J 1963 Phys. Rev. 131 104Google Scholar

    [34]

    Guo F, Cui B, Geng H, Zhang Y, Wu H, Zhang Q, Yu B, Pennycook S J, Cai W, Sui J 2019 Small 15 1902493Google Scholar

    [35]

    Shenoy U S, Bhat D K 2020 J. Mater. Chem. C 8 2036Google Scholar

    [36]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041516Google Scholar

    [37]

    Callaway J 1959 Phys. Rev. 113 1046Google Scholar

    [38]

    Hussain T, Li X, Danish M H, Rehman M U, Zhang J, Li D, Chen G, Tang G 2020 Nano Energy 73 104832Google Scholar

    [39]

    Li W, He Q Y, Chen J F, Pan Z L, Wang T 2014 Chem. Phys. Lett. 616-617 196Google Scholar

    [40]

    Guo F, Wu H, Zhu J, Yao H, Zhang Y, Cui B, Zhang Q, Yu B, Pennycook S J, Cai W, Chu C W, Sui J 2019 Proc. Natl. Acad. Sci. U.S.A. 116 21998Google Scholar

    [41]

    Wang H, Hwang J, Zhang C, Wang T, Su W, Kim H, Kim J, Zhai J, Wang X, Park H, Kim W, Wang C 2017 J. Mater. Chem. A 5 14165Google Scholar

    [42]

    Tang J, Yao Z, Chen Z, Lin S, Zhang X, Xiong F, Li W, Chen Y, Pei Y 2019 Mater. Today Phys. 9 100091Google Scholar

    [43]

    Wang D, Zhang X, Yu Y, Xie L, Wang J, Wang G, He J, Zhou Y, Pang Q, Shao J, Zhao L D 2019 J. Alloys Compd. 773 571Google Scholar

  • 图 1  Sn1.04–xMnxIn0.01Te (Cu2Te)0.05 (x = 0—0.17)的(a) XRD图谱, (b) 57.5°—60° XRD图谱局部放大图, (c) 晶格常数随Mn掺杂量x的变化

    Figure 1.  Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 samples (x = 0–0.17): (a) XRD patterns; (b) enlarged view between 57.5°–60°; (c) lattice parameter as a function of x

    图 2  Sn0.89Mn0.15In0.01Te(Cu2Te)0.05样品的扫描电子显微镜图像

    Figure 2.  Scanning electron microscope images of the Sn0.89Mn0.15In0.01Te(Cu2Te)0.05 sample.

    图 3  Sn1.04–xMnxIn0.01Te(Cu2Te)0.05(x = 0—0.17)样品的(a) 电导率随温度的变化, (b) 室温下载流子浓度和迁移率随x的变化, (c) Seebeck系数随温度的变化, (d) 室温下Seebeck系数与载流子浓度关系以及和相关研究的对比图[11,17,30-32], (e) 室温下有效质量对比图, (f) 功率因子随温度的变化

    Figure 3.  Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 (x = 0–0.17) samples: (a) Electrical conductivities as a function of temperature; (b) carrier concentration and mobility as a function of x at room temperature; (c) Seebeck coefficients as a function of temperature; (d) the relationship between Seebeck coefficient and carrier concentration at room temperature and comparison with the correlation studies[11,17,30-32]; (e) effective mass comparison at room temperature; (f) power factor as a function of temperature.

    图 4  Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 (x = 0—0.17)样品的(a) 总热导率、(b) 洛伦兹数、(c) 载流子热导率、(d) 晶格热导率随温度的变化

    Figure 4.  Thermoelectric properties of Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 (x = 0–0.17) as a function of temperature: (a) Total thermal conductivity; (b) Lorenz number; (c) carrier thermal conductivity; (d) lattice thermal conductivity.

    图 5  Sn1.04In0.01Te(Cu2Te)0.05样品和Sn0.89Mn0.15In0.01Te(Cu2Te)0.05样品的(a) 晶格热导率的实验值与拟合结果对比, (b) 晶格热导率与1000/T的函数关系图

    Figure 5.  (a) Experimental and fitting results of lattice thermal conductivity for Sn1.04In0.01Te(Cu2Te)0.05 and Sn0.89Mn0.15In0.01Te(Cu2Te)0.05; (b) lattice thermal conductivity as a function of 1000/T for Sn1.04In0.01Te(Cu2Te)0.05 and Sn0.89Mn0.15In0.01Te(Cu2Te)0.05.

    图 6  (a) Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 (x = 0—0.17)样品的zT值随温度的变化; (b) 不同掺杂样品300—873 K的zTave[11,19,23,30,32,40-43]

    Figure 6.  (a) Temperature dependent zT for Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 (x = 0–0.17) samples; (b) comparison of zTave with a temperature gradient of 300–873 K[11,19,23,30,32,40-43].

    Baidu
  • [1]

    Wood C 1988 Rep. Prog. Phys. 51 459Google Scholar

    [2]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [3]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [4]

    Brebrick R F 1963 J. Phys. Chem. Solids 24 27Google Scholar

    [5]

    Rogers L M 1968 J. Phys. D: Appl. Phys. 1 845Google Scholar

    [6]

    Wu H, Chang C, Feng D, Xiao Y, Zhang X, Pei Y, Zheng L, Wu D, Gong S, Chen Y, He J, Kanatzidis M G, Zhao L D 2015 Energy Environ. Sci. 8 3298Google Scholar

    [7]

    Banik A, Shenoy U S, Anand S, Waghmare U V, Biswas K 2015 Chem. Mater. 27 581Google Scholar

    [8]

    Tan G, Shi F, Doak J W, Sun H, Zhao L D, Wang P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2015 Energy Environ. Sci. 8 267Google Scholar

    [9]

    Tan G, Zhao L D, Shi F, Doak J W, Lo S H, Sun H, Wolverton C, Dravid V P, Uher C, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 7006Google Scholar

    [10]

    Tan X J, Shao H Z, He J, Liu G Q, Xu J T, Jiang J, Jiang H C 2016 Phys. Chem. Chem. Phys. 18 7141Google Scholar

    [11]

    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 Proc. Natl. Acad. Sci. U.S.A. 110 13261Google Scholar

    [12]

    Ma Z, Lei J, Zhang D, Wang C, Wang J, Cheng Z, Wang Y 2019 ACS Appl. Mater. Interfaces 11 33792Google Scholar

    [13]

    Bhat D K, Shenoy U S 2017 J. Phys. Chem. C 121 7123Google Scholar

    [14]

    Banik A, Vishal B, Perumal S, Datta R, Biswas K 2016 Energy Environ. Sci. 9 2011Google Scholar

    [15]

    Roychowdhury S, Biswas R K, Dutta M, Pati S K, Biswas K 2019 ACS Energy Lett. 4 1658Google Scholar

    [16]

    Tan G, Hao S, Hanus R C, Zhang X, Anand S, Bailey T P, Rettie A J E, Su X, Uher C, Dravid V P, Snyder G J, Wolverton C, Kanatzidis M G 2018 ACS Energy Lett. 3 705Google Scholar

    [17]

    Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y, Ge B 2016 Adv. Electron. Mater. 2 1600019Google Scholar

    [18]

    Hu L, Zhang Y, Wu H, Li J, Li Y, McKenna M, He J, Liu F, Pennycook S J, Zeng X 2018 Adv. Energy Mater. 8 1802116Google Scholar

    [19]

    Tang J, Gao B, Lin S, Li J, Chen Z, Xiong F, Li W, Chen Y, Pei Y 2018 Adv. Funct. Mater. 28 1803586Google Scholar

    [20]

    Tang J, Yao Z, Wu Y, Lin S, Xiong F, Li W, Chen Y, Zhu T, Pei Y 2020 Mater. Today Phys. 15 100247Google Scholar

    [21]

    Xu X, Cui J, Yu Y, Zhu B, Huang Y, Xie L, Wu D, He J 2020 Energy Environ. Sci. 13 5135Google Scholar

    [22]

    Blachnik R, Igel R 1974 Z. Naturforsch., B: Chem. Sci. 29 625Google Scholar

    [23]

    Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y, Pei Y 2017 Adv. Mater. 29 1605887Google Scholar

    [24]

    Li W, Chen Z, Lin S, Chang Y, Ge B, Chen Y, Pei Y 2015 J. Materiomics 1 307Google Scholar

    [25]

    Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B, Pei Y 2019 Joule 3 1276Google Scholar

    [26]

    Zak A K, Majid A W H, Abrishami M E, Yousefi R 2011 Solid State Sci. 13 251Google Scholar

    [27]

    Sarker P, Sen S K, Mia M N H, Pervez M F, Mortuza A A, Hossain S, Mortuza M F, Ali M H, Nur S, Kabir H, Chowdhury M A M 2021 Ceram. Int. 47 3626Google Scholar

    [28]

    Guo F, Cui B, Liu Y, Meng X, Cao J, Zhang Y, He R, Liu W, Wu H, Pennycook S J, Cai W, Sui J 2018 Small 14 1802615Google Scholar

    [29]

    Acharya S, Pandey J, Soni A 2016 Appl. Phys. Lett. 109 133904Google Scholar

    [30]

    Li S M, Li J Q, Yang L, Liu F S, Ao W Q, Li Y 2016 Mater. Des. 108 51Google Scholar

    [31]

    Uher C 2016 Materials Aspect of Thermoelectricity (Vol. 1) (Boca Raton: CRC Press) p8

    [32]

    傅铁铮, 沈家骏, 忻佳展, 朱铁军 2019 硅酸盐学报 47 1467

    Fu T Z, Shen J J, Qi J Z, Zhu T J 2019 J. Chin. Ceram. Soc. 47 1467

    [33]

    Brebrick R F, Strauss A J 1963 Phys. Rev. 131 104Google Scholar

    [34]

    Guo F, Cui B, Geng H, Zhang Y, Wu H, Zhang Q, Yu B, Pennycook S J, Cai W, Sui J 2019 Small 15 1902493Google Scholar

    [35]

    Shenoy U S, Bhat D K 2020 J. Mater. Chem. C 8 2036Google Scholar

    [36]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041516Google Scholar

    [37]

    Callaway J 1959 Phys. Rev. 113 1046Google Scholar

    [38]

    Hussain T, Li X, Danish M H, Rehman M U, Zhang J, Li D, Chen G, Tang G 2020 Nano Energy 73 104832Google Scholar

    [39]

    Li W, He Q Y, Chen J F, Pan Z L, Wang T 2014 Chem. Phys. Lett. 616-617 196Google Scholar

    [40]

    Guo F, Wu H, Zhu J, Yao H, Zhang Y, Cui B, Zhang Q, Yu B, Pennycook S J, Cai W, Chu C W, Sui J 2019 Proc. Natl. Acad. Sci. U.S.A. 116 21998Google Scholar

    [41]

    Wang H, Hwang J, Zhang C, Wang T, Su W, Kim H, Kim J, Zhai J, Wang X, Park H, Kim W, Wang C 2017 J. Mater. Chem. A 5 14165Google Scholar

    [42]

    Tang J, Yao Z, Chen Z, Lin S, Zhang X, Xiong F, Li W, Chen Y, Pei Y 2019 Mater. Today Phys. 9 100091Google Scholar

    [43]

    Wang D, Zhang X, Yu Y, Xie L, Wang J, Wang G, He J, Zhou Y, Pang Q, Shao J, Zhao L D 2019 J. Alloys Compd. 773 571Google Scholar

  • [1] Lu Yi-Lin, Dong Sheng-Jie, Cui Fang-Chao, Zhang Kai-Cheng, Liu Chun-Mei, Li Jie-Sen, Mao Zhuo. Theoretical prediction of C- and O-doped Hittorf’s violet phosphorene as bipolar magnetic semiconductor material. Acta Physica Sinica, 2024, 73(1): 016301. doi: 10.7498/aps.73.20231279
    [2] He Jun-Song, Luo Feng, Wang Jian, Yang Shi-Guan, Zhai Li-Jun, Cheng Lin, Liu Hong-Xia, Zhang Yan, Li Yan-Li, Sun Zhi-Gang, Hu Ji-Fan. Thermoelectric properties of Co doped TiNiCoxSn alloys fabricated by melt spinning. Acta Physica Sinica, 2024, 73(10): 107201. doi: 10.7498/aps.73.20240112
    [3] Tian Chun-Ling, Liu Hai-Yan, Wang Biao, Liu Fu-Sheng, Gan Yun-Dan. Phase transition and equation of state of dense liquid nitrogen at high temperature and high pressure. Acta Physica Sinica, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [4] Li Meng-Rong, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Improvement of thermoelectric performance of SnTe-based solid solution by entropy engineering. Acta Physica Sinica, 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [5] Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng. Improving interface properties of Te based thermoelectric materials and composite electrodes. Acta Physica Sinica, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [6] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [7] Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong. Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li. Acta Physica Sinica, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [8] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [9] Liu Yin-Juan, He Duan-Wei, Wang Pei, Tang Ming-Jun, Xu Chao, Wang Wen-Dan, Liu Jin, Liu Guo-Duan, Kou Zi-Li. Syntheses and studies of superhard composites under high pressure. Acta Physica Sinica, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [10] Wang Hong-Xiang, Ying Peng-Zhan, Yang Jiang-Feng, Chen Shao-Ping, Cui Jiao-Lin. Defects and thermoelectric performance of ternary chalcopyrite CuInTe2-based semiconductors doped with Mn. Acta Physica Sinica, 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [11] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [12] Fang Chao, Jia Xiao-Peng, Chen Ning, Zhou Zhen-Xiang, Li Ya-Dong, Li Yong, Ma Hong-An. Crystal growth and characterization of hydrogen-doped single diamond with Fe(C5H5)2 additive. Acta Physica Sinica, 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [13] Liu Kui-Li, Zhou Si-Hua, Chen Song-Ling. Exchange bias tuning of metal ions doped in CuO nanocomposites. Acta Physica Sinica, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [14] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [15] Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng. Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel. Acta Physica Sinica, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [16] Qin Jie-Ming, Wang Hao, Zeng Fan-Ming, Li Jian-Li, Wan Yu-Chun, Liu Jing-He. Synthesis of MgxZn1-xO under high pressure and high temperature. Acta Physica Sinica, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [17] Guo Xi, Wang Xia, Zheng Wu, Tang Wei-Hua. Dielectric properties of Eu-doped polycrystalline TbMnO3. Acta Physica Sinica, 2010, 59(4): 2815-2819. doi: 10.7498/aps.59.2815
    [18] Zhang Yun, Shao Xiao-Hong, Wang Zhi-Qiang. A first principle study on p-type doped 3C-SiC. Acta Physica Sinica, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [19] Xu Xin-Fa, Shao Xiao-Hong. Calculation of the electronic structure of Y-doped SrTiO3. Acta Physica Sinica, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [20] Yu Zhou, Li Xiang, Long Xue, Cheng Xing-Wang, Wang Jing-Yun, Liu Ying, Cao Mao-Sheng, Wang Fu-Chi. Study of synthesis and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Acta Physica Sinica, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
Metrics
  • Abstract views:  5715
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2020
  • Accepted Date:  17 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回
Baidu
map